• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2017, Vol. 53 ›› Issue (18): 202-208.doi: 10.3901/JME.2017.18.202

• 交叉与前沿 • 上一篇    

扫码分享

基于分类学习粒子群优化算法的液压矫直机控制

张凯, 宋锦春, 李松, 时佳   

  1. 东北大学机械工程与自动化学院 沈阳 110004
  • 收稿日期:2016-07-31 修回日期:2017-01-04 出版日期:2017-09-20 发布日期:2017-09-20
  • 通讯作者: 张凯(通信作者),男,1981年出生,博士研究生.主要研究方向为智能计算及优化控制.E-mail:99267502@qq.com;宋锦春(通信作者),男,1957年出生,博士,教授,博士研究生导师.主要研究方向为人工智能,机电液一体化.E-mail:jchsong@mail.neu.edu.cn

Hydraulic Straightener Control Optimizer Based on Particle Swarm with Classification Learning

ZHANG Kai, SONG Jinchun, LI Song, SHI Jia   

  1. Mechanical Engineering and Automation, Northeast University, Shenyang 110004
  • Received:2016-07-31 Revised:2017-01-04 Online:2017-09-20 Published:2017-09-20

摘要: 在处理工程控制及设计中含有多参数,多约束的单目标优化问题时,为了获得更好的优化解,提出一种分类学习的粒子群优化算法。它根据每个粒子的函数适应值,将群体分为优势群体、中层群体和劣势群体三类,分别采取不同的学习方法和学习方向。优势群体继续保持自身的学习速度和学习方向;中层群体采取互相学习的策略;劣势群体采取加强向优势群体学习的策略。其优势在于不受函数连续、可导形式的制约。数值试验结果表明,相比于近年提出的一些改进粒子群算法,这种算法在处理含有单峰,多峰,离散,动态问题的函数时,具有良好的收敛性能。结合工程实例,在处理压力容器结构设计以及液压矫直机PID控制的参数优化问题时,此算法能够获得使系统性能更佳的参数组合。

关键词: PID, 分类学习, 结构设计, 粒子群优化, 液压矫直机

Abstract: To get the better solutions of the single objective engineering optimization problems, which have multi-parameters and multi-constraints, a novel particle swarm optimization algorithm is proposed with classification learning. The particle swarm is divided into three classes, i.e. better class, middle class and worse class. For each class, different learning methods and directions are used, respectively. For the better class, the learning speed and direction itself are remained. For the middle class, the interactive learning strategy is introduced. For the worse class, the learning direction to the better class is modified. Hence, the algorithm is not affected by the continuous and differentiable functions. It is illustrated that, by the numerical experiments, this algorithm has the better performance, to deal with the function which contains uni-modal, multi-modal discrete and dynamic problems, comparing with other improved particle swarm optimization algorithms. It is indicated by the engineering application examples that this algorithm can get the better parameters which can make the system to get the better performance, when dealing with structure design and hydraulic straightener PID controller problems.

Key words: classification learning, hydraulic straightener, particle swarm optimization, PID, structure design

中图分类号: