• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2015, Vol. 51 ›› Issue (19): 109-116.doi: 10.3901/JME.2015.19.109

• 机械动力学 • 上一篇    下一篇

扫码分享

不确定声场分析的区间矩阵分解摄动有限元法

尹盛文, 于德介, 夏百战   

  1. 湖南大学汽车车身先进设计制造国家重点实验室
  • 出版日期:2015-10-05 发布日期:2015-10-05

Decomposed Interval Matrix Perturbation Finite Element Method for the Response Analysis of the Acoustic Field with Uncertain Parameters

YIN Shengwen, YU Dejie, XIA Baizhan   

  1. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University
  • Online:2015-10-05 Published:2015-10-05

摘要: 针对修正一阶区间摄动有限元法存在的一阶Taylor展开误差较大和求解摄动逆矩阵时计算效率不高的缺陷,提出区间矩阵分解摄动有限元法(Decomposed interval matrix perturbation finite element method, DIMPFEM)。该方法将系统动态刚度矩阵分解为若干系统子矩阵之和,每个系统子矩阵的摄动矩阵用摄动因子和常量矩阵的乘积表示,避免了摄动矩阵的Taylor展开误差;采用Epsilon算法求解摄动逆矩阵的修正Neumann级数,有效提高了计算效率。将DIMPFEM应用于具有区间参数的二维管道和二维商务车声腔模型的声压响应分析,分析结果表明,与修正一阶区间摄动有限元法比较,DIMPFEM获得了更高的计算精度和计算效率。

关键词: Epsilon算法, 矩阵分解, 区间参数, 声压响应, 修正Neumann级数, 有限元法

Abstract: To further improve the computational accuracy and efficiency of the modified interval perturbation finite element method (MIPFEM), a decomposed interval matrix perturbation finite element method (DIMPFEM) is proposed. In the proposed method, the dynamic stiffness matrix of an acoustic system is decomposed into the sum of several sub-matrices whose perturbation matrix can be expressed as the products of perturbation factors and determine matrices, thus the errors arising from the first-order Taylor expansion can be avoided. To achieve a higher computational efficiency, the inverse perturbation matrix, approximated by the modified Neumann series expansion is calculated by the epsilon-algorithm. Numerical examples on a 2D acoustic tube and a 2D acoustic cavity of a multi-purpose vehicle (MPV) with interval parameters verify that the computational accuracy and efficiency of DIMPFEM are higher than those of MIPFEM.

Key words: Epsilon-algorithm, finite element method, interval parameters, matrix decomposition, modified Neumann series, sound pressure response

中图分类号: