• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2015, Vol. 51 ›› Issue (16): 164-170.doi: 10.3901/JME.2015.16.164

• 可再生能源与工程热物理 • 上一篇    下一篇

小喉径音速喷嘴热效应对流量影响的热边界层分析

王超1,2, 王刚1,2, 丁红兵1,2   

  1. 1.天津大学电气与自动化工程学院 天津 300072
    2.天津市过程检测与控制重点实验室 天津 300072
  • 出版日期:2015-08-20 发布日期:2015-08-20
  • 基金资助:
    国家自然科学基金(61072101)和教育部新世纪优秀人才支持计划(NCET-10-0621)资助项目

Analysis of Thermal Boundary Layer of Thermal Effects on Flow Characteristics of Small Sonic Nozzles

WANG Chao1,2, WANG Gang1,2, DING Hongbing1,2   

  1. 1.School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072
    2.Tianjin Key Laboratory of Process Measurement and Control, Tianjin 300072
  • Online:2015-08-20 Published:2015-08-20

摘要: 随着气体在音速喷嘴中膨胀降温,低温气体与管壁的热交换会产生一系列复杂的影响,称之为“热效应”。用于微小流量测量的小喉径音速喷嘴由于喉部直径很小且精度要求高,热效应的影响更为严重。利用热边界层理论分析不同入口压力、不同位置、不同喉径和不同保冷条件下的管壁温度变化规律,根据试验结果,从理论上分析管壁动态温度分布与热边界层的相互作用关系,利用CFD软件仿真,分析管壁温度变化引起的边界层厚度变化对音速喷嘴流动特性的影响规律,并通过数据拟合得到了雷诺数和管壁温降对流出系数偏差的影响的计算公式。结果表明,以仿真数据为例,当管壁温降15 K时,由热边界层变薄引起流出系数增大可达0.195%,其影响不容忽视。

关键词: 流出系数, 热边界层, 热效应, 音速喷嘴

Abstract: The gas temperature will drop greatly when flowing through the nozzle. The heat exchange between the cold gas and the wall will produce a series of complex effects which are called “thermal effect”. The small-diameter nozzles used in the field of small flow measurement will be influenced by the thermal effect seriously. The laws of temperature variation of sonic nozzles are analyzed by the thermal boundary layer theory with different inlet pressure, locations and throat diameters. According to the experimental data, the dynamic interaction between the wall temperature distribution and the thermal boundary layer thickness is analyzed theoretically. The changes of boundary layer thickness are studied in detail by the CFD method and a formula of discharge coefficient deviation is fitted. It is indicated that the discharge coefficient increases by 0.195% with the wall temperature decreasing by 15 K caused by the thinning of the boundary layer which is necessary to pay more attention.

Key words: discharge coefficient, sonic nozzle, thermal boundary layer, thermal effects

中图分类号: