›› 2013, Vol. 49 ›› Issue (22): 34-40.
徐科;宋敏;杨朝霖;周鹏
XU Ke;SONG Min;YANG Chaolin;ZHOU Peng
摘要: 通过图像分割算法寻找由缺陷组成的可疑区域是热轧带钢表面缺陷在线检测与识别的关键。将热轧带钢表面图像分为“背景”和“缺陷”两大类,采用隐马尔可夫树(Hidden Markov tree,HMT)模型分别建模并实现多尺度缺陷分割。将不同类别的缺陷用同一个“缺陷模型”来表示,可以降低算法复杂度。HMT模型对带钢表面常见缺陷的分割正确率达到94.4%,分割错误率为18.8%。针对HMT模型得到的细尺度分割结果中分割错误率较高问题,引入基于环境的多尺度融合方法(Context-adaptive hidden Markov tree, CAHMT),将不同尺度的分割结果融合,大幅降低细尺度分割的分割错误率,达到3.7%。
中图分类号: