• CN:11-2187/TH
  • ISSN:0577-6686

›› 2013, Vol. 49 ›› Issue (13): 63-68.

• 论文 • 上一篇    下一篇

扫码分享

灰色神经元拟合算法在有限元模型修正中的应用

杨海峰;程珩;权龙   

  1. 太原理工大学新型传感器与智能控制教育部重点实验室;太原理工大学机械电子工程研究所
  • 发布日期:2013-07-05

Modal Parameters Identification of Time-varying System Based on Multi-scale Chirplet Sparse Signal Decomposition

CHEN Guanbao;YU Dejie;WU Xueming   

  1. State Key Laboratory of Advanced Design and Manufacture for Vehicle Body, Hunan University
  • Published:2013-07-05

摘要: 针对参数化修正有限元模型过程中难以利用较少数据建立参数与模态的精准数学预测模型问题,提出一种基于灰色理论调整矢量神经元权重的新型数学模型。使用最小二乘法将结构进行模态计算得到的数据拟合出几种不同的数学预测模型,挑取两个预测精度最高的模型作为输入端,建立神经元模型。为快速准确地计算权重,自定义神经元矢量求和运算方法。输入样本训练网络,根据权重的变化序列运用灰色理论预测权重的最终值,完成矢量神经元预测模型的建立。这种建模方法依据较少数据即可得到较高的预测精度,通用性好,符合工程计算需要。通过齿轮箱有限元模型修正实例对这种预测模型的有效性进行验证,该方法可以为结构的有限元模型修正提供有效路径。

关键词: 灰色系统理论, 神经元预测模型, 矢量运算, 有限元模型修正

Abstract: Based on the multi-scale chirp let sparse signal decomposition (MCSSD), a method for modal parameters identification of time-varying systems is proposed. In the proposed method, the MCSSD method is used to decompose the vibration responses of a multi-degree-of-freedom linear time-varying system into several single-mode vibration responses, at the same time; the corresponding instantaneous frequency of each single-mode vibration response can be obtained. By using the envelope and instantaneous frequency of the single-mode vibration response, the system modal frequency and modal damping ratio can be identified. Compared with the empirical mode decomposition and other time-frequency analysis methods, the proposed method has strong noise immunity and high identification accuracy, further more, the mode confusion problem in decomposing the vibration response can be eliminated. Simulation example of the modal parameters identification of a multi-degree of freedom linear time-varying system shows the effectiveness and accuracy of the proposed method.

Key words: Modal parameters, Multi-scale chirplet, Sparse signal decomposition, Time-varying system

中图分类号: