• CN:11-2187/TH
  • ISSN:0577-6686

›› 2013, Vol. 49 ›› Issue (12): 24-31.

• 论文 • 上一篇    下一篇

扫码分享

基于多目标的高强度钢材料参数稳健反求方法

李维逸;王琥   

  1. 湖南大学汽车车身先进设计制造国家重点实验室
  • 发布日期:2013-06-20

Multi-objective-based Robust High-strength Steel Material Parameter Inverse Method

LI Weiyi;WANG Hu   

  1. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University
  • Published:2013-06-20

摘要: 研究表明,不同类型的先进高强度钢将呈现出不同的应变率效应,材料参数能否正确描述应变率效应直接影响到仿真的精度。因此,如何获取精确的材料参数是保证汽车碰撞仿真结果可靠性的前提。为此,在混合数值法的基础上,提出基于多目标优化的材料参数稳健反求方法。该方法的特点在于:在保证反求精度的前提下,考虑试验设计中的不确定性,将试验稳定性作为除试验结果误差外的另一目标函数。此外,为了保证试验数据的客观性,同样采用反求技术对动态单向拉伸试验的结果进行滤波。为了验证该方法的有效性,采用多目标优化反求方法获取Johnson-Cook模型的材料参数,并通过碰撞试验和仿真对其进行验证。结果表明,该反求方法的结果具有足够的精度和稳健性。

关键词: 材料参数反求方法, 多目标优化, 稳健性, 先进高强度钢

Abstract: Research has shown that different advanced high-strength steel (AHSS) will render a different strain-rate effect, whether the material parameter describe the strain-rate effect correctly or not will affect the accuracy of simulation. Therefore, the reliability of the vehicle crash simulation is based on the accuracy of material parameter. A robust material parameter inverse method is suggested based on the popular hybrid numerical method and multi-objective optimization. On the premise of ensuring the accuracy of inversion, the proposed method considers the uncertainties in experiment. Furthermore, the stability of experimental technology should be another objective function besides the error of the experiment results. To ensure the reliability of the experimental data, the dynamic uniaxial tensile test results are filtered by inverse technology similarly. To validate the effectiveness of the proposed method, the Johnson-Cook model parameters are identified by the multi-objective based inverse method, car crash experiments and simulations are also performed. The result has shown that the inverse result by this method has enough accuracy and robustness.

Key words: Advanced high-strength steel, Material parameter inverse method, Multi-objective optimization, Robust

中图分类号: