• CN:11-2187/TH
  • ISSN:0577-6686

›› 2011, Vol. 47 ›› Issue (19): 74-80.

• 论文 • 上一篇    下一篇

扫码分享

基于小波包—坐标变换的滚动轴承故障特征增强方法

李宏坤;赵长生;周帅;郭义杰   

  1. 大连理工大学机械工程学院
  • 发布日期:2011-10-05

Fault Feature Enhancement Method for Rolling Bearing Based on Wavelet Packet-coordinate Transformation

LI Hongkun;ZHAO Changsheng;ZHOU Shuai;GUO Yijie   

  1. School of Mechanical Engineering, Dalian University of Technology
  • Published:2011-10-05

摘要: 滚动轴承早期故障特征信号微弱且易受正常成分干扰,因此不易准确识别滚动轴承的早期故障。对含有微弱故障的滚动轴承信号进行小波包分解,通过对小波包分解得到的各子带进行研究,提出一种基于小波包—坐标变换(Wavelet packet-coordinate transformation, WP-CT)的故障特征增强方法。考虑到各频带均包含不同程度的故障信息,将小波包分解后的所有子带进行主分量分析(Principal component analysis, PCA)或独立分量分析(Independent component analysis, ICA)坐标变换,进而重构信号以进行滚动轴承故障识别。此方法能够削弱原始信号中正常成分带来的干扰,突出故障冲击成分,充分挖掘所有子带隐含的故障信息,从而提升故障识别能力。为证明此方法的有效性,采用仿真信号和工程实际信号验证分析,相比传统方法,基于小波包—坐标变换的新方法能够突出故障微弱特征,有利于滚动轴承早期状态识别和诊断技术的发展。

关键词: 独立分量分析, 特征增强, 小波包, 主分量分析, 坐标变换

Abstract: Rolling element bearing fault feature is very weak in the incipient process and interfered by normal features. Therefore, it is not convenient to early fault classification. Frequency bands obtained by wavelet packet decomposition are investigated for rolling bearing vibration signal. A new fault diagnosis method is put forward based on wavelet packet-coordinate transformation(WP-CT) for feature enhancement. As every frequency band obtained by wavelet packet containing fault feature, principal component analysis(PCA) or independent component analysis(ICA) is used for every sub-band coordinate transformation. Then, a signal can be reconstructed for fault classification. This method can weaken the interference from normal signal information and intensify fault impact information. Thus, it can use all information from every sub-band and contribute to improve classification performance. Simulated signal and practical testified signal are used to testify the effectiveness of this method. It can be concluded that this new WP-CT method can enhance weak feature and reduce the interference from normal signal, which is very helpful for rolling bearing fault diagnosis technology development.

Key words: Coordinate transformation, Feature enhancement, Independent component analysis, Principal component analysis, Wavelet packet

中图分类号: