• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2022, Vol. 58 ›› Issue (3): 140-148.doi: 10.3901/JME.2022.03.140

• 机械动力学 • 上一篇    下一篇

扫码分享

基于小波包敏感频带选择的复材铣边颤振监测研究

张磊, 郑侃, 孙连军, 孙红伟, 薛枫, 王涛   

  1. 南京理工大学机械工程学院 南京 210094
  • 收稿日期:2021-02-19 修回日期:2021-06-23 出版日期:2022-02-05 发布日期:2022-03-19
  • 通讯作者: 郑侃(通信作者),男,1983年出生,教授。主要研究方向为先进制造技术与装备。E-mail:zhengkan@njust.edu.cn
  • 作者简介:张磊,男,1997年出生。主要研究方向为加工颤振在线监测。E-mail:zhanglei4938@outlook.com
  • 基金资助:
    国家自然科学基金资助项目(51861145405,52075265,91860132)。

Investigation on Chatter Monitoring of Composite Milling Edge Based on the Selection of Sensitive Frequency Band of Wavelet Packet

ZHANG Lei, ZHENG Kan, SUN Lianjun, SUN Hongwei, XUE Feng, WANG Tao   

  1. School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094
  • Received:2021-02-19 Revised:2021-06-23 Online:2022-02-05 Published:2022-03-19

摘要: 针对航空蒙皮类复合材料零件铣边颤振初期频率淹没问题,提出了一种基于小波包敏感频带选择的能量熵颤振监测方法。首先使用频率消除算法(Frequency elimination algorithm,FEA)对铣边采集信号进行去主轴转频、刀齿齿频及其倍频处理。其次对去频后的信号进行小波包分解(Wavelet packet decomposition,WPD),分析WPD的频带分布特性。然后基于频带相关系数ρ和能量比波动方差σ2选取颤振敏感频带作为颤振研究对象,提取分解后信号能量熵作为颤振监测量并基于拉依达准则确定系统颤振监测阈值。最后通过仿真信号和试验验证了所提算法的有效性。结果表明,经FEA和敏感频带筛选后信号的能量熵值分辨率提高了205%,且相较于未去频信号系统颤振监测响应时间能提前0.5 s。

关键词: 小波包分解, 敏感频带, 颤振, 能量熵, 频率消除算法

Abstract: A novel energy entropy chatter monitoring method based on the selection of sensitive frequency band of wavelet packet is proposed to solve the problem of the initial chatter frequency submerged in the milling of large aviation skin composite materials. Firstly, the frequency elimination algorithm (FEA) is performed to remove the spindle rotation frequency, tooth passing frequency and their harmonics on the signals collected by the edge milling. Secondly, wavelet packet transform (WPD) is applied to decompose the filtered signal into a set of frequency bands and the frequency band distribution characteristics of WPD are analyzed. Then, sensitive frequency bands containing rich chatter information are selected as the research object based on the frequency band correlation coefficient ρ and energy ratio fluctuation variance σ2 and energy entropy is extracted as the chatter monitoring feature. Meanwhile, PauTa criterion is used for determining the chatter monitoring threshold of the system. Finally, the simulation signal and experimental signal are employed to verify the effectiveness of the algorithm. The results showed that the energy entropy resolution ratio of the signal is increased by 202% after the FEA and sensitive frequency band selection, compared with the original signal, and the system chatter condition can be detected 0.5s earlier.

Key words: wavelet packet decomposition, sensitive frequency band, chatter, energy entropy, frequency elimination algorithm

中图分类号: