• CN:11-2187/TH
  • ISSN:0577-6686

›› 2011, Vol. 47 ›› Issue (14): 99-107.

• 论文 • 上一篇    下一篇

扫码分享

基于角点特征的立体视觉车辆环境感知系统研究

姜岩;高峰;徐国艳   

  1. 北京理工大学机械与车辆学院;北京航空航天大学交通科学工程学院
  • 发布日期:2011-07-20

Corner-based Stereo Vision System for Vehicular Surroundings Sensing

JIANG Yan;GAO Feng;XU Guoyan   

  1. School of Mechanical Engineering, Beijing Institute of Technology School of Transportation Science and Engineering, Beihang University
  • Published:2011-07-20

摘要: 通过对立体视觉系统进行测距试验发现,标定误差将会导致远距离测距精度的下降,并使立体图像对不再严格的满足极线约束,这说明对于车辆环境感知这类大探测范围的应用不能直接使用传统的立体视觉算法。针对这些问题,设计出基于角点的立体视觉系统进行车辆环境感知。通过二次标定减小相机标定误差对测距精度的影响,使系统能够在有效探测范围内进行准确测距。使用弱化的极线约束对图像中检测到的角点进行立体视觉处理,提高匹配成功率。根据车道线检测结果在线标定相机俯仰角,消除行驶过程中相机俯仰角变化对远距离物体检测造成的影响。为实现大基线立体视觉系统在进行大范围障碍物检测时的实时性处理,根据车速动态调整检测范围以降低立体视觉处理的运算量。试验结果表明,该系统能够对车前3~80 m的障碍物进行实时可靠准确的检测和测距。

关键词: 车辆环境感知, 车身姿态, 角点检测, 立体视觉, 弱极线约束

Abstract: Results of range measurement test imply that calibration errors will degrade the accuracy of the stereo vision system as the sensing distance increases, and make the epipolar constraint invalid. Therefore, conventional stereo vision algorithms are not applicable when the sensing range is large. A corner-based stereo vision system is designed for vehicle surrounding sensing applications where the sensing range is up to 80 m. Errors in the range measurement are corrected by a secondary calibration. Based on loose epipolar constraint, stereo vision processing of the corners detected in the image is performed to improve the success rate of matching. Lane detection is integrated with the obstacle-detection system to estimate the vision system’s pitch angle, which is indispensable in the transformation from the camera coordinates to the ground coordinate. For the purpose of real time processing, the sensing range is dynamically adjusted on the basis of the vehicle speed. Experimental results show that the system is able to reliably detect obstacles such as vehicles and pedestrians from 3 m to 80 m in front in real time.

Key words: Corner detection, Loose epipolar constraint, Stereovision, Vehicle pose calibration, Vehicular surroundings sensing

中图分类号: