• CN:11-2187/TH
  • ISSN:0577-6686

›› 2011, Vol. 47 ›› Issue (14): 108-113.

• 论文 • 上一篇    下一篇

扫码分享

基于RBF神经网络的最佳滑移率在线计算方法

彭晓燕;章兢;陈昌荣   

  1. 湖南大学汽车车身先进设计制造国家重点实验室;湖南大学电气与信息工程学院
  • 发布日期:2011-07-20

Calculation of RBF Neural Network Based Optimal Slip Ratio

PENG Xiaoyan;ZHANG Jing;CHEN Changrong   

  1. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University College of Electrical and Information Engineering, Hunan University
  • Published:2011-07-20

摘要: 针对汽车制动过程的非线性特征及其最佳滑移率在线估计的复杂性,提出一种基于Burckhardt模型的最佳滑移率在线辨识方法。分别用3个以工况为参数的径向基函数神经网络作为Burckhardt模型的3个参数;采用粒子群算法和结构化非线性参数优化方法相结合的混合参数优化方法估计3个径向基函数神经网络的所有参数,由该改进的Burckhardt模型即可产生任意工况下的纵向附着系数—滑移率(-s)曲线;在保证在线辨识精度的前提下,根据最佳滑移率等分原则选取一定数量的工况参数以构成Burckhardt模型的参数集,设计出基于实时-s数据的最佳滑移率在线辨识策略,完成最佳滑移率辨识系统构建。在线控制动系统中的仿真验证了所提出的最佳滑移率在线辨识方法的可行性和有效性。

关键词: Burckhardt模型, 混合参数优化方法, 径向基函数神经网络, 最佳滑移率, 共振频率, 流体脉动, 信号分析, 自振射流

Abstract: In view of the nonlinear property of vehicle braking process and the complexity of on-line estimation, a method based on Burckhardt model to identify the optimal slip ratio on-line is proposed . Burckhardt model is firstly revised with three radial basis function neural networks (RBFNNs), each of which includes the parameters of road conditions. Hybrid parameter optimization method, a combination of particle swarm optimization (PSO) and structured nonlinear parameter optimization method (SNPOM), is implemented for parameter optimization of the designed three RBFNNs, resulting in Burckhardt model of any setting road condition, and optimal slip ratio identification system is investigated by utilizing the parameters of selected typical road conditions. The results of simulation studies in brake-by-wire (BBW) system validate the feasibility and flexibility of the method discussed.

Key words: Hybrid parameter optimization method Burckhardt model, Optimal slip-ratio, Radial basis function(RBF) neural network, Pulsating Flow, resonance frequency, self-resonating water jet, signal analysis

中图分类号: