• CN:11-2187/TH
  • ISSN:0577-6686

›› 2005, Vol. 41 ›› Issue (4): 215-219.

• 论文 • 上一篇    下一篇

扫码分享

一种二次对角再生神经网络及其在舰炮控制中的应用

周连佺;王小椿   

  1. 西安交通大学机械工程学院
  • 发布日期:2005-04-15

QUADRATIC DIAGONAL RECCRRENT NEURAL NETWORK AND APPLICATIONS IN FOLLOWING CONTROL OF WARSHIP-GUNS

Zhou Lianquan;Wang Xiaochun   

  1. School of Mechanical Engineering, Xi'an Jiaotong University
  • Published:2005-04-15

摘要: 提出一种二次对角再生神经网络(QDRNN),其隐含层由二次再生神经元组成,QDRNN是动态映射。在舰炮控制中使用两个QDRNN,一个为二次对角再生神经辨识器(QDRNI),另一个为二次对角再生神经控制器(QDRNC)。QDRNI为QDRNC提供舰炮液压伺服系统的灵敏度,使用动态反传算法训练QDRNI和QDRNC。由于二次再生性,QDRNN能捕捉液压伺服系统的动态形为。试验结果表明QDRNN的控制精度高且自适应能力强。

关键词: 舰载火炮, 试验研究, 再生神经网络

Abstract: A quadratic diagonal recurrent neural network(QD- RNN) is presented. The hidden layer of QDRNN is comprised of quadratic self-recurrent neuron, so the QDRNN is dynamic mapping. Two QDRNNs are utilized in a ship-gun control system, one is an identifier called quadratic diagonal recurrent neuroidentifier(QDRNI) and the other as a controller called quadratic diagonal recurrent neurocontroller(QDRNC). The hydraulic servo system of ship-gun is identified by the QDRNI which then provides the sensitivity information of the hydraulic servo system to the QDRNC. A generalized dynamic backprop- agation algorithm is developed and used to train both QDRNC and QDRNI. Due to the quadratic recurrence, the QDRNN can capture the dynamic behavior of the servo system. The test results for the hydraulic servo system indicate that the control precision of QDRNN is high and the adaptability is strong.

Key words: Recurrent neural network, Test study, Warship-guns

中图分类号: