• CN:11-2187/TH
  • ISSN:0577-6686

›› 2004, Vol. 40 ›› Issue (7): 105-109.

• 论文 • 上一篇    下一篇

扫码分享

基于CAE和神经网络的压边力优化

谢晖;钟志华   

  1. 湖南大学机械与汽车工程学院
  • 发布日期:2004-07-15

OPTIMIZATION OF BINDER FORCE BASED CAE AND NEURAL NET

Xie Hui;Zhong Zhihua   

  1. College of Mechanical and Automotive Engineering, Hunan University
  • Published:2004-07-15

摘要: 通过CAE仿真计算,对成形过程中某些时刻板料的稳定性进行数值化描述,直接以板料上某些关键点(如最易失稳处)的稳定性值作为输入参数,运用神经网络方法进行压边力的优化。采用这种方法训练样本时不需要专门的测试设备,可以得到整个冲压过程的压边力最优控制曲线,有较高的精度,试验证明该方法效果很好。

关键词: CAE, 神经网络, 压边力, 优化, 波箔型径向气体轴承, 波纹箔片非线性刚度模型, 有限差分法, 轴承静特性

Abstract: The optimum methods of binder force based on CAE are provided in the analysis. By CAE, the sheet’s stabilities in forming process are described each time. Some stability values of key spots (the easiest instable parts) can be input parameters, and Neural net method is applied to optimize binder force. By this method, it is easy to obtain optimum binder force without special equipment to educate style, and the results are in good agreement with experiments.

Key words: Binder force, CAE, Neural net, Optimization, bearing static performance, bump foil nonlinear stiffness model, bump-type gas foil bearing, finite difference method

中图分类号: