• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (21): 259-273.doi: 10.3901/JME.2025.21.259

• 特邀专栏:纪念张启先院士诞辰 100 周年 • 上一篇    

扫码分享

大尺度空间平面可展开机构驱动配置多目标优化

马莺1,2, 李团结1,2, 曾子杰1,2, 郑士昆2,3, 赵将3, 王一喆3,4   

  1. 1. 西安电子科技大学高性能电子装备机电集成制造全国重点实验室 西安 710071;
    2. 西安电子科技大学机电工程学院 西安 710071;
    3. 西安空间无线电技术研究所 西安 710100;
    4. 西安交通大学机械工程学院 西安 710049
  • 收稿日期:2025-03-03 修回日期:2025-06-24 发布日期:2025-12-27
  • 作者简介:马莺,女,2001年出生。主要研究方向为空间可展开机构动力学。E-mail:2622931554@qq.com
    李团结(通信作者),男,1972年出生,博士,教授,博士研究生导师。主要研究方向为空间可展开结构。E-mail:tjli@mail.xidian.edu.cn
  • 基金资助:
    国家自然科学基金(52475280)和陕西省自然科学基础研究计划重点—实验室重点(2025SYS-SYSZD-105)资助项目。

Multi-objective Optimization of Drive Configuration for Large-scale Space Planar Deployable Mechanisms

MA Ying1,2, LI Tuanjie1,2, ZENG Zijie1,2, ZHENG Shikun2,3, ZHAO Jiang3, WANG Yizhe3,4   

  1. 1. State Key Laboratory of Electromechanical Integrated Manufacturing of High-Performance Electronic Equipments, Xidian University, Xi'an 710071;
    2. School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071;
    3. Xi'an Institute of Space Ratio Technology, Xi'an 710100;
    4. School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049
  • Received:2025-03-03 Revised:2025-06-24 Published:2025-12-27

摘要: 大尺度空间平面可展开机构具有运动自由度多、动力学响应复杂等特点,且动力学响应与驱动配置的耦合性较强,在工程中往往难以直接计算出合适的驱动参数。当前,针对平面可展开机构驱动配置优化的研究,没有充分考虑关节摩擦、构件接触或碰撞等非线性因素的影响。针对这一问题,研究了一种大尺度空间平面可展开机构驱动配置多目标优化方法。首先,结合旋量理论与李群框架描述,采用牛顿-欧拉法建立了机构的动力学模型,同时考虑了铰链摩擦、面板接触碰撞及锁止机构等非线性因素的影响,其中基于冲量动量方程描述了机构展开过程中可能存在的构件碰撞。通过与多体动力学软件仿真结果进行对比,验证了所建立动力学模型的准确性。其次,以运动冲击、运动包络及面板应变最小化为优化目标,建立了驱动配置多目标优化模型,采用多目标遗传算法对驱动扭簧刚度与预载角进行协同优化,得到了一组Pareto最优解。将优化结果代入ADAMS软件进行仿真对比,结果表明,优化后的驱动配置在一定程度上减少了机构展开过程中的面板接触挤压情况,同时降低了面板的运动冲击,约束了机构的运动包络。研究内容对保障大尺度平面机构在轨可靠、精确、稳定展开具有一定的理论意义和工程应用价值。

关键词: 平面可展开机构, 牛顿-欧拉法, 动力学响应, 驱动配置, 多目标优化

Abstract: Large-scale space planar deployable mechanisms have the characteristics of multiple degrees of freedom and complex dynamic responses. The dynamic responses are highly coupled with the drive configuration, which makes it difficult to directly calculate the appropriate drive parameters in engineering. At present, the research on the optimization of the drive configuration of planar mechanisms considering nonlinear factors such as joint friction, contact, collision, and dynamic effect of locking component is not sufficient. This research proposes a multi-objective optimization method for the drive configuration of large-scale space planar mechanisms. First, the Newton-Euler method is used to establish the dynamic model of the mechanism by combining the screw theory and the Lie group framework description. The influence of nonlinear factors such as hinge friction, panel contact and collision, and locking component is considered. The possible panel collision during the deployment of the mechanism is described based on the impulse momentum equation. The accuracy of the established dynamic model is verified by comparing with the simulation results of multi-body dynamics software. Second, a multi-objective optimization model of drive configuration is constructed with the optimization objectives of minimizing the impact force, motion envelope and panel strain during mechanism deploying. The multi-objective genetic algorithm is used to coordinately optimize the drive torsion spring stiffness and preload angle. A set of Pareto optimal solutions are obtained. The optimization results are substituted into ADAMS for simulation. The comparison of the results shows that the optimized drive configuration reduces the panel contact during the deployment of the mechanism, while reducing the impact force and motion envelope. This research has certain theoretical significance and engineering application value for ensuring the reliable, precise and stable deployment of large-scale planar mechanisms on orbit.

Key words: space planar deployable mechanism, Newton-Euler formulation, dynamic response, multi-objective optimization

中图分类号: