• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (20): 81-90.doi: 10.3901/JME.2025.20.081

• 材料科学与工程 • 上一篇    

扫码分享

基于SPSO-BP神经网络的带筋壁板蠕变成形高精度快速回弹预测

湛利华1,2, 赵帅1, 杨有良1,2, 陈赞冲1, 谢豪1, 刘长志3, 鄢东洋3   

  1. 1. 中南大学轻合金研究院 长沙 410083;
    2. 中南大学极端服役性能精准制造全国重点实验室 长沙 410083;
    3. 北京宇航系统工程研究所 北京 100076
  • 收稿日期:2024-11-25 修回日期:2025-07-12 发布日期:2025-12-03
  • 作者简介:湛利华,女,1976年出生,博士,教授,博士研究生导师。主要研究方向为复杂薄壁构件形性协同制造。E-mail:yjs-cast@csu.edu.cn
    杨有良(通信作者),男,1988年出生,博士,讲师。主要研究方向为复杂薄壁构件形性协同制造。E-mail:yangyouliang@csu.edu.cn
  • 基金资助:
    国家自然科学基金(U2341273,U22A20190,52205435)、湖南省自然科学基金(2022JJ40621)、湖南省科技创新计划(2020RC4001)和极端服役性能精准制造国家重点实验室自主课题(ZZYJKT2022-07)资助项目。

High Precision and Rapid Springback Prediction for Creep Forming of Ribbed Panel Based on SPSO-BP Neural Network

ZHAN Lihua1,2, ZHAO Shuai1, YANG Youliang1,2, CHEN Zanchong1, XIE Hao1, LIU Changzhi3, YAN Dongyang3   

  1. 1. Research Institute of Light Alloy, Central South University, Changsha 410083;
    2. State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, Changsha 410083;
    3. Beijing Institute of Astronautical Systems Engineering, Beijing 100076
  • Received:2024-11-25 Revised:2025-07-12 Published:2025-12-03

摘要: 蠕变时效成形技术可实现大型复杂薄壁构件的形性协同制造,但其工艺制度、模具型面等关键参数的确定需要大量繁琐的有限元计算迭代,导致开发周期长、成本高。在此背景下,提出基于SPSO-BP神经网络的带筋壁板蠕变时效成形高精度快速回弹预测方法。通过对蠕变时效成形过程关键建模参数提取以及带筋壁板结构特征离散点表征,建立了材料特性、时效工艺、壁板结构、模具型面与构件回弹型面关联关系的BP神经网络回弹预测模型;进一步通过考虑混沌Logistic映射函数的SPSO粒子群算法优化BP神经回弹模型初始权值和阈值,实现了神经网络回弹模型精确训练和数据集扩充。试验结果表明,SPSO-BP预测模型RMSE误差仅为0.68 mm,计算效率是常规有限元仿真的90倍。研究结果可用于大型带筋类壁板构件蠕变时效成形工艺参数范围快速定位,大幅缩短开发周期。

关键词: 蠕变时效, 回弹预测, 粒子群算法, BP神经网络, 带筋壁板

Abstract: Creep age forming can realize the shape-properties integrated manufacturing of large and complex thin-walled components. However, the determination of key parameters such as process system and die surface requires complicated finite element calculation iterations, which leads to long development cycle and high cost. Based on SPSO-BP neural network, a high precision and rapid springback prediction method for creep age forming of ribbed panel is proposed. By extracting key modeling parameters of forming process and characterizing discrete points of structure features of ribbed panel, a BP neural network model for predicting the relationship between material properties, ageing process, panel structure, die surface and component’s springback surface was established. Furthermore, the SPSO particle swarm optimization considering chaotic Logistic mapping function was used to optimize the initial weight and threshold of the BP neural springback model, and the accurate training and data set expansion of the neural network springback model were realized. The experimental results show that the RMSE error of SPSO-BP prediction model is only 0.68 mm and the calculation efficiency is 90 times higher than that of conventional finite element simulation. The research results can be used to rapidly locate the processing parameters of creep age forming for large components and shorten the development cycle significantly.

Key words: creep age forming, springback prediction, particle swarm optimization, BP neural network, ribbed panel

中图分类号: