• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (19): 43-53.doi: 10.3901/JME.2025.19.043

• 机器人及机构学 • 上一篇    

扫码分享

面向并联机构正运动学方程多根问题的改进差分进化算法

文世坤1,2, 吉爱红1, LEE Heow Pueh2, 车林仙3, 杨志康1   

  1. 1. 南京航空航天大学机电学院 南京 210016;
    2. 新加坡国立大学机械工程系 新加坡 117575;
    3. 重庆工程职业技术学院智能制造与交通学院 重庆 402260
  • 收稿日期:2024-11-04 修回日期:2025-04-17 发布日期:2025-11-24
  • 作者简介:文世坤,男,1995年出生,博士研究生。主要研究方向为机器人机构学、机构数值分析与优化。E-mail:wsk19960828@nuaa.edu.cn
    吉爱红(通信作者),男,1973年出生,博士,研究员,博士研究生导师。主要研究方向为仿生机器人、手术机器人、跳跃机器人。E-mail:meeahji@nuaa.edu.cn
  • 基金资助:
    国家自然科学基金(52075248, 52205018)和江苏省科技计划专项资金(国际科技合作)(BZ2024021)资助项目。

Improvement of Differential Evolution Algorithm for Solving the Multi-root in Forward Kinematic Equations of Parallel Mechanisms

WEN Shikun1,2, JI Aihong1, LEE Heow Pueh2, CHE Linxian3, YANG Zhikang1   

  1. 1. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016;
    2. Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore;
    3. Department of Intelligent Manufacturing and Transportation, Chongqing Vocational Institute of Engineering, Chongqing 402260
  • Received:2024-11-04 Revised:2025-04-17 Published:2025-11-24

摘要: 耦合并联机构的正运动学方程可转化为具有多根问题的非线性方程组,而在一次运算中求解非线性方程组的多个根是数值计算的主要挑战,提出一种基于个体信息的邻域双策略差分进化算法用于求解该问题。首先,以Stewart并联机构为例,给出了并联机构正运动学方程转化为无约束优化问题的步骤;其次,为改进差分进化算法寻优效率,提出一种自适应子种群策略用于平衡全局搜索能力和局部搜索能力。同时,提出一种个体判断准则将种群个体进行划分,并根据个体反馈信息进行变异策略和控制参数选择。最后,为验证所提方法的有效性与通用性,分别以Stewart并联机构、4-PRPaU并联机构和5PSS/UPU并联机构正运动学方程求解为例,使用NTDE、NCDE、CADE和MNPSO算法进行求解。实验结果表明,NTDE算法可以准确的求解出并联机构正运动学方程的所有根,并且NTDE算法获得的RRSR值均优于其他三种比较算法。

关键词: 并联机构, 正运动学方程, 差分进化算法, 自适应子种群, 个体判断准则

Abstract: The forward kinematics equations of a coupled parallel mechanism can be reformulated as a system of nonlinear equations with multi-root. Solving such a system in a single operation poses a significant challenge in numerical computation. A neighborhood two-strategy differential evolutionary algorithm (NTDE) based on individual information is proposed to solve this problem. Firstly, the transformation of the forward kinematic equations of a parallel mechanism into an unconstrained optimization problem is illustrated using the Stewart parallel mechanism as an example. Secondly, to enhance the optimization efficiency of the differential evolution algorithm, an adaptive subpopulation strategy is proposed that balances global and local search capabilities. Additionally, an individual judgment criterion is introduced to differentiate between individuals in the population, while the variation strategy and control parameter selection are informed by feedback. Finally, to validate the effectiveness and generalizability of the proposed method, the forward kinematic equations of the Stewart parallel mechanism, the 4-PRPaU parallel mechanism, and the 5PSS/UPU parallel mechanism are solved using the NTDE, NCDE, CADE, and MNPSO algorithms as examples. It is demonstrated by the experimental results that the NTDE algorithm effectively identifies all the roots of the forward kinematic equations for the parallel mechanism. Moreover, the RR and SR values obtained using the NTDE algorithm are shown to outperform those of the three comparative algorithms.

Key words: parallel mechanisms, forward kinematics equations, differential evolutionary algorithms, adaptive subpopulation, individual judgement criteria

中图分类号: