机械工程学报 ›› 2025, Vol. 61 ›› Issue (17): 171-192.doi: 10.3901/JME.2025.17.171
• 数字化设计与制造 • 上一篇
潘瑞, 董志森, 陈树君
收稿日期:2024-09-10
修回日期:2025-04-16
发布日期:2025-10-24
作者简介:潘瑞,女,1989年出生,博士,副教授,博士研究生导师。主要研究方向为新材料焊接与连接、纳秒激光与超快激光精密加工与制造技术。E-mail:panrui@bjut.edu.cn;董志森,男,1999年出生。主要研究方向为纳秒激光加工技术、激光连接工艺。E-mail:dongzs@emails.bjut.edu.cn;陈树君(通信作者),男,1971年出生,博士,教授,博士研究生导师。主要研究方向为焊接与连接、智能焊接与成形制造、智能焊接控制与装备、特种能场焊接。E-mail:sjchen@bjut.edu.cn
基金资助:PAN Rui, DONG Zhisen, CHEN Shujun
Received:2024-09-10
Revised:2025-04-16
Published:2025-10-24
摘要: 纳秒激光连接(Nanosecond laser welding,NLW)是近些年的研究热点之一,与连续激光相比,纳秒激光具有较高的加工精度、较低的热影响区、较高的峰值功率以及加工区灵活可控等特点,被认为是薄元件、热敏元件、微电子封装器件等小型高性能零部件的重要加工手段之一。首先从发表论文和专利申请方面分析了纳秒激光连接的研究现状,其次重点阐述了纳秒激光连接焊缝成形机制、金属以及非金属纳秒激光连接及其影响因素、纳秒激光连接的模拟与仿真等;随后总结了纳秒激光连接的应用;最后讨论了该领域存在的一些问题及发展方向。
中图分类号:
潘瑞, 董志森, 陈树君. 纳秒激光连接技术研究进展及展望[J]. 机械工程学报, 2025, 61(17): 171-192.
PAN Rui, DONG Zhisen, CHEN Shujun. Advance and Prospects of Nanosecond Laser Welding Technology[J]. Journal of Mechanical Engineering, 2025, 61(17): 171-192.
| [1] MEIJER J. Laser beam machining (LBM), state of the art and new opportunities[J]. Journal of Materials Processing Technology, 2004, 149(1-3): 2-17. [2] KNOWLES M R H, RUTTERFORD G, KARNAKIS D, et al. Micro-machining of metals, ceramics and polymers using nanosecond lasers[J]. The International Journal of Advanced Manufacturing Technology, 2007, 33(1-2): 95-102. [3] KUMAR A, SARKAR N K, NEOGY S. Remote laser spot welding of AISI 430 sheets by fiber lasers—A phenomenal effect in refining weld microstructure with nanosecond pulses[J]. Journal of Laser Applications, 2022, 34(4): 042020. [4] 段军, 李祥友, 王泽敏, 等. 一种振镜式激光三维扫描系统: CN200810197661.2[P]. 2009-04-29. DUAN Jun, LI Xiangyou, WANG Zemin, et al. A galvanoscope laser 3D scanning system: CN200810197661.2[P]. 2009-04-29. [5] HOPP B, SMAUSZ T, BEREZNAI M. Processing of transparent materials using visible nanosecond laser pulses[J]. Applied Physics A, 2007, 87(1): 77-79. [6] LIU H, LIN W, HONG M. Hybrid laser precision engineering of transparent hard materials: challenges, solutions and applications[J]. Light: Science & Applications, 2021, 10(1): 162. [7] DEMARBAIX A, DUCOBU F, JUSTE E, et al. Experimental investigation on green ceramic machining with nanosecond laser source[J]. Journal of Manufacturing Processes, 2021, 61: 245-253. [8] HOU J, LI R, XU C, et al. A comparative study on microstructure and properties of pulsed laser welding and continuous laser welding of Al-25Si-4Cu-Mg high silicon aluminum alloy[J]. Journal of Manufacturing Processes, 2021, 68: 657-667. [9] WITZENDORFF P V, MOALEM A, STUTE U, et al. Performance enhancement of aluminum infrared laser welding by preconditioning with nanosecond laser pulses[J]. Journal of Laser Applications, 2014, 26(1): 012005. [10] 王建刚, 刘勇, 杨威, 等. 一种对金属薄板进行纳秒激光焊接的系统: CN201620830961.X[P]. 2017-02-08. WANG Jiangang, LIU Yong, YANG Wei. A nanosecond laser welding system for sheet metal: CN201620830961.X[P]. 2017-02-08. [11] FARAZILA Y, JAMALUDIN F, SHUKOR M H A. A brief review: Laser joining of polymer-metal structures[J]. ASEAN Engineering Journal, 2012, 2(2): 5-12. [12] LIU N. Processing of back surface of si wafers with a pulsed Nd: YAG laser[J]. Journal of Laser Micro/Nanoengineering, 2016, 11(2): 232-238. [13] LUO C, LIN L. The application of nanosecond-pulsed laser welding technology in MEMS packaging with a shadow mask[J]. Sensors and Actuators A: Physical, 2002, 97-98: 398-404. [14] CHEN X, BROX D, ASSADSANGABI B, et al. A stainless-steel-based implantable pressure sensor chip and its integration by microwelding[J]. Sensors and Actuators A: Physical, 2017, 257: 134-144. [15] WU C, RONG Y, HUANG Y, et al. Precision cutting of polyvinyl chloride film by ultraviolet nanosecond laser[J]. Materials and Manufacturing Processes, 2021, 36(14): 1650-1657. [16] XU J, JING C, JIAO J, et al. Experimental study on carbon fiber-reinforced composites cutting with nanosecond laser[J]. Materials (Basel), 2022, 15(19): 6686. [17] LE H R, HUOT N, AUDOUARD E, et al. Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy[J]. Applied Physics Letters, 2002, 80(21): 3886-3888. [18] WANG H J, YANG T. A review on laser drilling and cutting of silicon[J]. Journal of the European Ceramic Society, 2021, 41(10): 4997-5015. [19] 赵兴科, 邢德胜, 刘大勇. 激光微连接技术研究与应用进展[J]. 航空制造技术, 2017(12): 28-34. ZHAO Xingke, XING Desheng, LIU Dayong. Research and application progress of laser microcoupling technology[J]. Aeronautical Manufacturing Technology, 2017(12): 28-34. [20] ZHANG P, JIA Z, YU Z, et al. A review on the effect of laser pulse shaping on the microstructure and hot cracking behavior in the welding of alloys[J]. Optics & Laser Technology, 2021, 140: 107094. [21] MEI L, LIN L, YAN D, et al. Metal spattering in laser scanning welding of T2 copper and welding quality[J]. Optics and Lasers in Engineering, 2023, 161: 107392. [22] HUO J, ZHANG B, LI C, et al. The mechanism of the welding between silica glass and 304 stainless steel using nanosecond fibre laser[J]. Science and Technology of Welding and Joining, 2023: 1-8. [23] RONG Y, HUANG Y, LI M, et al. High-quality cutting polarizing film (POL) by 355 nm nanosecond laser ablation[J]. Optics & Laser Technology, 2021, 135: 106690. [24] ZHANG D, XU J, LI Z, et al. Removal mechanism of blue paint on aluminum alloy substrate during surface cleaning using nanosecond pulsed laser[J]. Optics & Laser Technology, 2022, 149: 107882. [25] RAZI S, MADANIPOUR K, MOLLABASHI M. Improving the hydrophilicity of metallic surfaces by nanosecond pulsed laser surface modification[J]. Journal of Laser Applications, 2015, 27: 042006. [26] 周凯, 杨灿, 杨焕, 等. 激光工艺参数对钛合金表面着色稳定性的影响[J]. 中国激光, 2023, 50(8): 0802008. ZHOU Kai, YANG Can, YANG Huan, et al. Effect of laser process parameters on surface tinting stability of titanium alloy[J]. Chinese Journal of Lasers, 2023, 50(8): 0802008. [27] PARANDOUSH P, TUCKER L, ZHOU C, et al. Laser assisted additive manufacturing of continuous fiber reinforced thermoplastic composites[J]. Materials & Design, 2017, 131: 186-95. [28] SINGH R K, NARAYAN J. Pulsed-laser evaporation technique for deposition of thin films: Physics and theoretical model[J]. Physical Review B, 1990, 41(13): 8843-59. [29] KELLER U, WEINGARTEN K J, KARTNER F X, et al. Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1996, 2(3): 435-53. [30] 顾波. 激光加工技术及产业的现状与应用发展趋势[J]. 金属加工(热加工), 2020, (10): 37-42. GU Bo. Current situation and application trend of laser processing technology and industry[J]. Metal Working (Hot Working), 2020, (10): 37-42. [31] 李焱, 杨宏. 从超短光到超短超强光的突破[J]. 物理与工程, 2019, 29(2): 3-7. LI Yan, YANG Hong. Breakthrough from ultra-short light to ultra-short ultra-strong light[J]. Physics and Engineering, 2019, 29(2): 3-7. [32] P'NG D, MOLIAN P. Q-switch Nd: YAG laser welding of AISI 304 stainless steel foils[J]. Materials Science and Engineering: A, 2008, 486(1-2): 680-685. [33] 卢宇峰. 全熔透激光焊热源数值模型及参数研究[D]. 上海: 上海交通大学, 2012. LU Yufeng. Numerical model and parameters of heat source in full penetration laser welding[D]. Shanghai: Shanghai Jiao Tong University, 2012. [34] OLIVEIRA A C, RIVA R, LIMA M S F, et al. laser micro-welding of thin sheets using nanosecond laser pulses[J]. Revista Brasileira de Aplicações de Vácuo, 2008, 27: 29-32. [35] SHERMAN R A. Microwelding and microdrilling with lasers[J]. Annals of the New York Academy of Sciences, 1965, 122: 650-657. [36] PATSCHGER A, BLIEDTNER J. Constraints and optimization of the laser microwelding process of thin metal foils[J]. Journal of Laser Applications, 2017, 29(2): 022408. [37] SEILER M, PATSCHGER A, BLIEDTNER J. Investigations of welding instabilities and weld seam formation during laser microwelding of ultrathin metal sheets[J]. Journal of Laser Applications, 2016, 28(2): 022417. [38] SUDER W J, WILLIAMS S W. Investigation of the effects of basic laser material interaction parameters in laser welding[J]. Journal of Laser Applications, 2012, 24(3): 1882-1891. [39] SUDER W J, WILLIAMS S. Power factor model for selection of welding parameters in CW laser welding[J]. Optics & Laser Technology, 2014, 56: 223-239. [40] COROADO J, MECO S, WILLIAMS S, et al. Fundamental understanding of the interaction of continuous wave laser with aluminium[J]. The International Journal of Advanced Manufacturing Technology, 2017, 93(9-12): 3165-3174. [41] DOS SANTOS PAES L E, PEREIRA M, WEINGAERTNER W L, et al. Comparison of methods to correlate input parameters with depth of penetration in LASER welding[J]. The International Journal of Advanced Manufacturing Technology, 2018, 101(5-8): 1157-1169. [42] ASCARI A, FORTUNATO A. Nanosecond pulsed laser welding of high carbon steels[J]. Optics & Laser Technology, 2014, 56: 25-34. [43] NIU S, LI Q, ZHU B, et al. Microstructure and mechanical properties of nanosecond pulsed laser welded Al-Cu-steel laminated structures[J]. Science and Technology of Welding and Joining, 2022, 27(3): 176-85. [44] 肖华. 纳秒脉冲激光器在钢-铝异种金属激光微焊接中的应用[D]. 深圳: 深圳大学, 2019. XIAO Hua. Application of nanosecond pulse laser in laser microwelding of steel-aluminum dissimilar metals[D]. Shenzhen: Shenzhen University, 2019. [45] 焦俊科, 王飞亚, 孙加强, 等. 紫铜表面预处理及激光焊接工艺研究[J]. 激光与光电子学进展, 2016, 53(3): 158-163. JIAO Junke, WANG Feiya, SUN Jianqiang, et al. Study on copper surface pre-treating and welding with fiber lasers[J]. Laser & Optoelectronics Progress, 2016, 53(3): 158-163. [46] SHU F, NIU S, ZHU B, et al. Effect of pulse frequency on the nanosecond pulsed laser welded Al/steel lapped joint[J]. Optics & Laser Technology, 2021, 143: 107355. [47] 李小婷, 张继雪, 王瑾. 纳秒脉冲激光微焊接316不锈钢[J]. 应用激光, 2021, 41(1): 107-116. LI Xiaoting, ZHANG Jixue, WANG Jin. Nanosecond pulsed laser microwelding of 316 stainless steel[J]. Applied Laser, 2021, 41(1): 107-116. [48] 王熙杰, 蔡慧林. 0. 1 mm 厚薄板脉冲激光焊接关键技术研究[J]. 机械制造与智能化, 2021(14): 46-48. WANG Xijie, CAI Huilin. Research on key technology of pulsed laser welding of 0.1 mm thick and thin plate[J]. Machinery Manufacturing and Intelligence, 2021(14): 46-48. [49] 高琼, 王克鸿, 郭顺, 等. 纳秒激光工艺参数对铝-镁异种焊缝成形的影响[J]. 中国激光, 2018, 45(1): 109-114. GAO Qiong, WANG Kehong, GUO Shun, et al. Influence of nanosecond laser process parameters on Al-Mg dissimilar weld forming[J]. Chinese Journal of Laser, 2018, 45(1): 109-114. [50] COROADO J, GANGULY S, SUDER W, et al. Selection of parameters in nanosecond pulsed wave laser micro-welding[J]. The International Journal of Advanced Manufacturing Technology, 2021, 115(9-10): 2929-2944. [51] ELREFAEY A, TAKAHASHI M, IKEUCHI K. Friction-stir-welded lap joint of aluminum to zinc-coated steel[J]. Quarterly Journal of the Japan Welding Society, 2005, 23(2): 186-193. [52] 周志华. 电阻焊与激光焊技术在手机锂电池制造工艺中的应用与发展[J]. 制造业自动化, 2012, 34(14): 46-48. ZHOU Zhihua. Application and development of resistance welding and laser welding technology in manufacturing process of mobile phone lithium battery[J]. Manufacturing Automation, 2012, 34(14): 46-48. [53] 雷振, 秦国梁, 林尚扬, 等. 铝与钢异种金属焊接的研究与发展概况[J]. 焊接, 2006(4): 16-20. LEI Zhen, QIN Guoliang, LIN Shangyang, et al. Research and development of dissimilar metal welding between aluminum and steel[J]. Welding, 2006(4): 16-20. [54] 虞钢, 赵树森, 张永杰, 等. 异种金属激光焊接关键问题研究[J]. 中国激光, 2009, 36(2): 261-268. YU Gang, ZHAO Shusen, ZHANG Yongjie, et al. Research on key problems of laser welding of dissimilar metals[J]. Chinese Journal of Lasers, 2009, 36(2): 261-268. [55] ZHANG Y, SUN D Q, GU X Y, et al. Nd: YAG pulsed laser welding of TC4 Ti alloy to 301L stainless steel using Ta/V/Fe composite interlayer[J]. Materials Letters, 2018, 212: 54-57. [56] MATHIEU A, SHABADI R, DESCHAMPS A, et al. Dissimilar material joining using laser (aluminum to steel using zinc-based filler wire)[J]. Optics & Laser Technology, 2007, 39(3): 652-661. [57] YUSOF F, YUKIO M, YOSHIHARU M, et al. Effect of anodizing on pulsed Nd: YAG laser joining of polyethylene terephthalate (PET) and aluminium alloy (A5052)[J]. Materials & Design, 2012, 37: 410-415. [58] 王辉. 高温下Al/Cu/Al复合材料界面扩散规律及对导电性能的影响[J]. 功能材料, 2022, 53(7): 7163-7168. WANG Hui. Interfacial diffusion and its effect on electrical conductivity of Al/Cu/Al Composites at high temperature[J]. Functional Materials, 2022, 53(7): 7163-7168. [59] BRAUNOVIC M, ALEKSANDROV N. Intermetallic compounds at aluminum-to-copper and copper-to-tin electrical interfaces[C]//Proceedings of the Electrical Contacts-1992 Proceedings of the Thirty-Eighth IEEE Holm Conference on Electrical Contacts, F 18-21 Oct. 1992. [60] OZAKI H, KUTSUNA M, NAKAGAWA S, et al. Laser roll welding of dissimilar metal joint of zinc coated steel to aluminum alloy[J]. Journal of Laser Applications, 2010, 22(1): 1-6. [61] ZHANG Y, SUN D Q, GU X Y, et al. Microstructure and mechanical property improvement in laser-welded TC4 titanium alloy and 301L stainless steel joints without filler metal[J]. Journal of Materials Engineering and Performance, 2018, 28(1): 140-153. [62] ARAI T. Simulation of pulse laser welding of a thin metal and comparison with other heat sources[J]. Materials Science & Engineering Technology, 2013, 44(5): 462-71. [63] TORKAMANY M J, MALEK GHAINI F, POURSALEHI R. An insight to the mechanism of weld penetration in dissimilar pulsed laser welding of niobium and Ti-6Al-4V[J]. Optics & Laser Technology, 2016, 79: 100-7. [64] DULEY W W. Laser welding[M]. New York: John Wiley&Sons., 1999. [65] MAI T A, SPOWAGE A C. Characterisation of dissimilar joints in laser welding of steel-kovar, copper-steel and copper-aluminium[J]. Materials Science and Engineering: A, 2004, 374(1-2): 224-233. [66] DARBANI S M R, GHEZELBASH M, MAJD A E, et al. Temperature effect on the optical emission intensity in laser induced breakdown spectroscopy of super alloys[J]. Journal of the European Optical Society-Rapid publications, 2014, 9: 14058. [67] ABE N, FUNADA Y, TSUKAMOTO M. Welding of thin foils with elliptical beams[J]. Trans JWRI, 2008, 37(1): 27-31. [68] 徐春广, 李培禄. 无应力制造技术[J]. 机械工程学报, 2020, 56(8): 113-132. XU Chunguang, LI Peilu. Stress-free manufacturing technology[J]. Journal of Mechanical Engineering, 2020, 56(8): 113-132. [69] BRUYERE V, TOUVREY C, NAMY P, et al. Multiphysics modeling of pulsed laser welding[J]. Journal of Laser Applications, 2017, 29(2): 436-443. [70] 李俐群, 陈彦宾, 陶汪. 铝合金双光束焊接特性研究[J]. 中国激光, 2008(11): 1783-1788. LI Liqun, CHEN Yanbin, TAO Wang. Study of dual-beam welding characteristics of aluminum alloys[J]. China Laser, 2008(11): 1783-1788. [71] YANG Z B, TAO W, LI L Q, et al. Double-sided laser beam welded T-joints for aluminum aircraft fuselage panels: Process, microstructure, and mechanical properties[J]. Materials & Design, 2012, 33: 652-658. [72] SUN Q, DI H-S, LI J-C, et al. Effect of pulse frequency on microstructure and properties of welded joints for dual phase steel by pulsed laser welding[J]. Materials & Design, 2016, 105: 201-211. [73] JIA Z, ZHANG P, YU Z, et al. Evidence of solidification crack propagation in pulsed laser welding of aluminum alloy[J]. Opt Express, 2021, 29(12): 18495-18501. [74] 李萌盛, 吴元峰, 谢霞. 焊接参数对异种钢接头热应力影响的数值模拟[J]. 焊接, 2005(1): 16-18. LI Mingsheng, WU Yuanfeng, XIE Xia. Numerical simulation of the effect of welding parameters on thermal stresses in dissimilar steel joints[J]. Welding, 2005(1): 16-18. [75] 曾泽群, 杨冠华, 刘柯, 等. 基于超声波冲击的TC4钛合金焊接残余应力消除分析[J]. 焊接技术, 2023, 52(4): 44-48. ZENG Zegun, YANG Guanhua, LIU Ke, et al. Analysis of residual stress relief in TC4 titanium alloy welding based on ultrasonic impact[J]. Welding Technology, 2023, 52(4): 44-48. [76] 郝子龙, 张粉萍, 刘子聪, 等. 钛合金热时效与超声冲击焊接应力消除研究[J]. 电焊机, 2021, 51(11): 128-131. HAO Zilong, ZHANG Fanping, LIU Zicong, et al. Thermal aging and ultrasonic impact welding stress relief of titanium alloys[J]. Welding Machine, 2021, 51(11): 128-131. [77] 王者昌. 关于焊接残余应力消除原理的探讨[J]. 焊接学报, 2000 (2): 55-58. WANG Zhechang. Discussion on the principle of welding residual stress relief[J]. Journal of Welding, 2000(2): 55-58. [78] 吴希, 张培磊, 唐满, 等. 铜-铝异种箔片纳秒激光扫描点焊成形及组织特征[J]. 中国激光, 2019, 46(4): 67-74. WU Xi, ZHANG Peilei, TANG Man, et al. Nanosecond laser scanning spot welding of Cu-Al dissimilar foil and its microstructure characteristics[J]. Chinese Journal of Lasers, 2019, 46(4): 67-74. [79] KLAGES K, RUETTIMANN C, OLOWINSKY A. Laser beam micro welding of dissimilar metals[C]//International Congress on Applications of Lasers & Electro-Optics, 2003. [80] ABE N, FUNADA Y, ISHIDE M. Micro-welding of thin foil with direct diode laser[C]//Proc SPIE, 2003: 287-291. [81] WOIZESCHKE P, VOLLERTSEN F. Laser keyhole micro welding of aluminum foils to lap joints even with large gap sizes[J]. CIRP Annals, 2020, 69(1): 237-240. [82] KAWAHITO Y, KITO M, KATAYAMA S. In-process monitoring and adaptive control for gap in micro butt welding with pulsed YAG laser[J]. Journal of Physics D: Applied Physics, 2007, 40(9): 2972-2978. [83] 雷玉成, 韩明娟, 王健. 紫铜的激光焊接方法: CN200910035281.3[P]. 2010-03-17. LEI Yucheng, HAN Mingjuan, WANG Jian. Laser welding method of red copper: CN200910035281.3[P]. 2010-03-17. [84] DILTHEY U. Schweißtechnische Fertigungsverfahren 2[M]. Springer-Verlag GmbH Co. KG Publishing House, Heidelberg, 2005. [85] BROCKMANN R. Beitrag zum Mikronahtschweißen von Edelstahlfolien mit-tels dioden-gepumptem Nd: YAG-Laser[M]. Shaker Verlag Publishing House, Aachen, 2003. [86] OSBORNE R F. Clamping of film-like material for radiant energy welding: US-3997385-A.[P].1976-12-14. [87] PATSCHGER A, HOPF A, LOOSE T, et al. New approach to clamping in microwelding[J]. Journal of Laser Applications, 2015, 27(S2): 15-25. [88] KIM J, KIM S, KIM K, et al. Effect of beam size in laser welding of ultra-thin stainless steel foils[J]. Journal of Materials Processing Technology, 2016, 233: 125-34. [89] SHOOU J C, YAN K S, YANG T, et al. AlGaInP-sapphire glue bonded light-emitting diodes[J]. IEEE Journal of Quantum Electronics, 2002, 38(10): 1390-1394. [90] 殷胜昔, 楚建新. 蓝宝石整流罩与金属弹体新型的连接方法研究[J]. 航空精密制造技术, 2010, 46(1): 54-57. YIN Shengxi, CHU Jianxin. Aviation research on new connection method of sapphire fairing and metal projectile body[J]. Aeronautical Precision Manufacturing Technology, 2010, 46(1): 54-57. [91] GUO W, FU L, LIN T, et al. New design of sapphire joints brazed with bismuth-borate glass[J]. Ceramics International, 2019, 45(4): 5036-5049. [92] DE PABLOS-MARTíN A, HÖCHE T. Laser welding of glasses using a nanosecond pulsed Nd: YAG laser[J]. Optics and Lasers in Engineering, 2017, 90: 1-9. [93] FORTUNATO A, CUCCOLINI G, ASCARI A, et al. Hybrid metal-plastic joining by means of laser[J]. International Journal of Material Forming, 2010, 3(S1): 1131-1134. [94] DE PABLOS-MARTIN A, TISMER S, BENNDORF G, et al. Laser soldering of sapphire substrates using a BaTiAl6O12 thin-film glass sealant[J]. Optics & Laser Technology, 2016, 81: 153-161. [95] 张庆茂, 张洁娟, 黄明贺, 等. 一种硅片和玻璃的焊接方法及焊接系统: CN201811534088.X[P]. 2019-06-21. ZHANG Qinghe, ZHANG Jiejuan, HUANG Minghe, et al. Welding method and welding system of silicon wafer and glass: CN201811534088.X[P]. 2019-06-21. [96] WANG H, GUO L, ZHANG X, et al. Influence of processing parameters on the quality of titanium-coated glass welded by nanosecond pulse laser[J]. Optics & Laser Technology, 2021, 144: 107411. [97] ADEN M, ROESNER A, OLOWINSKY A. Optical characterization of polycarbonate: Influence of additives on optical properties[J]. Journal of Polymer Science Part B: Polymer Physics, 2010, 48(4): 451-455. [98] MINGHE H, QINGMAO Z, QITAO L, et al. UV-laser welding process of copper-plated glass[J]. Chinese Journal of Lasers, 2020, 47(10): 1002007. [99] SULTANA T, NEWAZ G, GEORGIEV G L, et al. A study of titanium thin films in transmission laser micro-joining of titanium-coated glass to polyimide[J]. Thin Solid Films, 2010, 518(10): 2632-2636. [100] MAMUSCHKIN V, ADEN M, OLOWINSKY A. Investigations on the interplay between focusing and absorption in absorber-free laser transmission welding of plastics[J]. Lasers in Manufacturing and Materials Processing, 2019, 6(2): 113-125. [101] SOPEÑA P, WANG A, MOUSKEFTARAS A, et al. Transmission laser welding of similar and dissimilar semiconductor materials[J]. Laser & Photonics Reviews, 2022, 16(11): 2200208. [102] LAMBIASE F, GENNA S. Laser-assisted direct joining of AISI304 stainless steel with polycarbonate sheets: Thermal analysis, mechanical characterization, and bonds morphology[J]. Optics & Laser Technology, 2017, 88: 205-214. [103] ASSUNCAO E, WILLIAMS S. Comparison of continuous wave and pulsed wave laser welding effects[J]. Optics and Lasers in Engineering, 2013, 51(6): 674-680. [104] HUSSEIN F I, AKMAN E, GENC OZTOPRAK B, et al. Evaluation of PMMA joining to stainless steel 304 using pulsed Nd: YAG laser[J]. Optics & Laser Technology, 2013, 49: 143-152. [105] NORDIN I H W, OKAMOTO Y, OKADA A, et al. Effect of wavelength and pulse duration on laser micro-welding of monocrystalline silicon and glass[J]. Applied Physics A, 2016, 122(4): 400. [106] KONDRATENKO V S, BORISOVSKⅡ V E. Laser welding of glass[J]. Glass and Ceramics, 2018, 75(3): 83-88. [107] MORALES M, GARCÍA-GONZÁLEZ S, RIEUX J, et al. Nanosecond pulsed laser surface modification of yttria doped zirconia for solid oxide fuel cell applications: Damage and microstructural changes[J]. Journal of the European Ceramic Society, 2023, 43(8): 3396-3403. [108] KIM J H, LEE C, LEE D M, et al. Pulsed Nd: YAG laser welding of Cu54Ni6Zr22Ti18 bulk metallic glass[J]. Materials Science and Engineering: A, 2007, 449-451: 872-875. [109] XU H, GUO X, LEI Y, et al. Welding deformation of ultra-thin 316 stainless steel plate using pulsed laser welding process[J]. Optics & Laser Technology, 2019, 119: 105583. [110] CHEN C, ZHANG F, ZHANG Y, et al. Single-pulse femtosecond laser ablation of monocrystalline silicon: A modeling and experimental study[J]. Applied Surface Science, 2022, 576: 151722. [111] LI Q, MU Z, LUO M, et al. Laser spot micro-welding of ultra-thin steel sheet[J]. Micromachines (Basel), 2021, 12(3): 342. [112] 王一飞, 虞宙, 李康妹, 等. 纳秒激光烧蚀钛合金微坑形貌的数值模拟分析[J]. 中国激光, 2022, 49(8): 0802008. WANG Yifei, YU Zhou, LI Kangmei, et al. Numerical simulation analysis of micro-pit morphology of titanium alloy subjected to nanosecond laser ablation[J]. Chinese Journal of Lasers, 2022, 49(8): 0802008. [113] 亓东锋, 刘翰辉, 陈松岩, 等. 纳秒脉冲激光与金属薄膜材料相互作用的瞬态研究[C]//第十二届全国硅基光电子材料及器件研讨会, 2017. QI Dongfeng, LIU Hanhui, CHEN Songyan, et al. Transient study on interaction between nanosecond pulsed laser and metal thin film materials[C]//The 12th National Symposium on Silicon Based Optoelectronic Materials and Devices, 2017. [114] DEMOS S G, NEGRES R A, RAMAN R N, et al. Mechanisms governing the interaction of metallic particles with nanosecond laser pulses[J]. Opt Express, 2016, 24(7): 7792-7815. [115] QIU T Q, TIEN C L. Short-pulse laser heating on metals[J]. International Journal of Heat and Mass Transfer, 1992, 35(3): 719-726. [116] WANG J, FANG F, AN H, et al. Laser machining fundamentals: Micro, nano, atomic and close-to-atomic scales[J]. International Journal of Extreme Manufacturing, 2023, 5(1): 012005. [117] 王丽, 谢非. 不锈钢与钛合金纳秒激光焊接工艺研究[J]. 精密成形工程, 2021(4): 149-153. WANG Li, XIE Fei. Study on nanosecond laser welding technology of stainless steel and Titanium Alloy[J]. Precision Forming Engineering, 2021(4): 149-153. [118] 向发午, 胡学安, 龚钦, 等. 纳秒光纤激光在异种金属焊接中的应用[J]. 热加工工艺, 2018(3): 9-12. XIANG Fawu, HU Xuean, GONG Qin, et al. Application of nanosecond fiber laser in dissimilar metal welding[J]. Thermal Processing Technology, 2018(3): 9-12. [119] TRINH L N, LEE D. The effect of using a metal tube on laser welding of the battery case and the tab for lithium-ion battery[J]. Materials (Basel), 2020, 13(19): 4460. [120] LI J F, SUN Y H, DING D W, et al. Nanosecond-pulsed laser welding of metallic glass[J]. Journal of Non-Crystalline Solids, 2020, 537: 120016. [121] 余本海. 飞秒激光对透明电介质材料的烧蚀与微加工研究[D]. 武汉: 华中科技大学, 2008. YU Benhai. Study on ablation and micromachining of transparent dielectric materials by femtosecond laser[D]. Wuhan: Huazhong University of Science and Technology, 2008. [122] WU H, MO W, HOU J, et al. Polarizing beam splitter based on a subwavelength asymmetric profile grating[J]. Journal of Optics, 2010, 12(1): 015703. [123] CHABROL G R, CICERON A, TWARDOWSKI P, et al. Investigation of diffractive optical element femtosecond laser machining[J]. Applied Surface Science, 2016, 374: 375-378. [124] KLEIN-WIELE J H, BEKESI J, SIMON P. Sub-micron patterning of solid materials with ultraviolet femtosecond pulses[J]. Applied Physics A, 2004, 79(4): 775-778. [125] 胡勇涛, 翟中生, 吕清花, 等. 基于空间光调制器的飞秒并行加工方法研究[J]. 应用光学, 2016, 37(2): 315. HU Yongtao, ZHAI Zhongsheng, LÜ Qinghua, et al. Research on femtosecond parallel processing method based on spatial light modulator[J]. Applied Optics, 2016, 37(2): 315. [126] HAYASAKI Y, SUGIMOTO T, TAKITA A, et al. Variable holographic femtosecond laser processing by use of a spatial light modulator[J]. Applied Physics Letters, 2005, 87(3). [127] NIINO H, HAYASAKI Y, MEUNIER M, et al. Holographic femtosecond laser processing[J]. Laser Applications in Microelectronic and Optoelectronic Manufacturing XV. 2010.10.1117/12.840974 [128] HASEGAWA S, HAYASAKI Y. Second-harmonic optimization of computer-generated hologram[J]. Optics Letters, 2011, 36: 2943-5. [129] YOSHIZAKI R, ITO Y, OGASAWARA K, et al. High-efficiency microdrilling of glass by parallel transient and selective laser processing with spatial light modulator[J]. Optics & Laser Technology, 2022, 154: 108306. [130] 杨彪, 刘福运, 檀财旺, 等. 动力电池激光焊接技术的应用现状与展望[J]. 焊接, 2022(9): 1-9. YANG Biao, LIU Fuyun, TAN Caiwang, et al. Application status and prospect of laser welding technology for power cells[J]. Welding, 2022(9): 1-9. [131] 康斌, 牛琳霞. 国内外钢铁企业激光拼焊发展现状分析[J]. 冶金管理, 2012(8): 52-55. KANG Bin, NIU Linxia. Analysis on the Development status of laser welding in domestic and foreign iron and steel enterprises[J]. Metallurgical Management, 2012(8): 52-55. [132] 陈根余, 顾春影, 梅丽芳, 等. 激光焊接技术在汽车制造中的应用与激光组焊单元设计[J]. 电焊机, 2010(5): 32-38. CHEN Genyu, GU Chunying, MEI Lifang, et al. Application of laser welding technology in Automobile Manufacturing and design of laser group welding element[J]. Electric Welding Machine, 2010(5): 32-38. [133] 祁俊峰. 全铝结构船长甲板的CO2激光焊接技术研 究[D]. 北京: 北京工业大学, 2008. QI Junfeng. Study on CO2 laser Welding technology of aluminum structure ship deck[D]. Beijing: Beijing University of Technology, 2008. [134] 禹杭, 李瑞峰, 刘鸿彦, 等. 舰船用轻合金结构激光焊接研究[J]. 舰船科学技术, 2020(5): 47-51. YU Hang, LI Ruifeng, LIU Hongyan, et al. Research on laser welding of light alloy structure for ship[J]. Ship Science and Technology, 2020(5): 47-51. [135] 轩福贞, 朱明亮, 王国彪. 结构疲劳百年研究的回顾与展望[J]. 机械工程学报, 2021, 57(6): 26-51. XUAN Fuzhen, ZHU Mingliang, WANG Guobiao. Review and prospect of structural fatigue research in the past century[J]. Journal of Mechanical Engineering, 2021, 57(6): 26-51. |
| [1] | 郭二廓, 刘树龙, 陈子彦, 乔华, 刘德永, 陈明. 强力车齿加工理论与方法研究综述[J]. 机械工程学报, 2025, 61(9): 335-349. |
| [2] | 付玲, 易斌, 尹莉, 薛丁琪, 任会礼, 王江超. 随焊感应加热尺寸和热源数对焊接失稳变形的影响[J]. 机械工程学报, 2025, 61(6): 112-120. |
| [3] | 胡志力, 芦俊杰, 魏鹏飞, 华林. Al-Zn-Mg-Cu合金预强化高效精确热冲压变形规律与力学性能研究[J]. 机械工程学报, 2025, 61(6): 160-173. |
| [4] | 韩宇泽, 刘雁鹏, 任明法, 祖磊, 何景轩. 考虑胶辊间隙的工艺参数耦合对复合材料湿法缠绕制品性能的影响与优化[J]. 机械工程学报, 2025, 61(5): 354-363. |
| [5] | 王蔚, 李晓旭, 刘伟军, 卞宏友, 邢飞, 王静. 激光清洗7075铝合金清洗质量建模及多目标优化研究[J]. 机械工程学报, 2025, 61(3): 422-439. |
| [6] | 赵希坤, 李聪波, 杨勇, 吕岩, 姜书艳. 数据-机理混合驱动下考虑刀具柔性的柔性加工工艺参数能效优化方法[J]. 机械工程学报, 2024, 60(7): 236-248. |
| [7] | 潘瑞, 冯英豪, 蒋凡, 陈树君. 界面间隙对纳秒激光连接石英玻璃/铜的影响[J]. 机械工程学报, 2024, 60(22): 68-75. |
| [8] | 熊健, 张之敬, 陈骁, 萨仁其木格, 苏亮, 金鑫. 精密光学元件胶接装配性能研究进展[J]. 机械工程学报, 2024, 60(22): 364-384. |
| [9] | 牛静宜, 鲁思伟, 张倍宁, 杨春成, 李涤尘. 变组分复合材料3D打印工艺中机器学习算法对工艺参数预测有效性研究[J]. 机械工程学报, 2024, 60(21): 263-274. |
| [10] | 程吉, 曹宏东, 屈蜀光, 郑凯伦, 何祝斌. 基于黏塑性本构的6061铝合金管热气胀成形工艺参量建模研究[J]. 机械工程学报, 2024, 60(16): 108-117. |
| [11] | 高转妮, 王磊磊, 李响, 刘志强, 吕飞阅, 黎一帆, 占小红. 7075铝合金激光熔丝增材制造热循环和温度梯度对熔池凝固组织的影响研究[J]. 机械工程学报, 2024, 60(1): 96-118. |
| [12] | 刘伟军, 索英祁, 姜兴宇, 田志强, 张栋, 杨国哲, 王弘玥, 韩清冰. 激光清洗过程低碳建模与工艺参数优化[J]. 机械工程学报, 2023, 59(7): 276-294. |
| [13] | 李昕悦, 李健, 张健康, 林盼盼, 林铁松, 何鹏. AgCu28-B2O3钎料空气反应钎焊连接Al2O3陶瓷工艺及机理研究[J]. 机械工程学报, 2023, 59(10): 48-55. |
| [14] | 陈玉田, 吴重军, 魏馨怡, 孟宪凯, 刘杰, 王琪冰. 微纳增材制造微圆柱结构的形貌分析与工艺优化研究[J]. 机械工程学报, 2023, 59(1): 286-297. |
| [15] | 董兰兰, 李亘, 熊胤泽, 张航, 王蕾, 李祥. GelMA/LPN/MC水凝胶的挤出式3D打印工艺与性能研究[J]. 机械工程学报, 2022, 58(9): 283-290. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
