[1] RAKHA T, GORODETSKY A. Review of unmanned aerial system (UAS) applications in the built environment: Towards automated building inspection procedures using drones[J]. Automation in Construction, 2018, 93: 252-264. [2] RESTAS A. Drone applications for supporting disaster management[J]. World Journal of Engineering and Technology, 2015, 3(3): 316-321. [3] MISHRA B, GARG D, NARANG P, et al. Drone-surveillance for search and rescue in natural disaster[J]. Computers and Communications, 2020, 156(2): 1-10. [4] SEO J, DUQUE L, WACKER J. Drone-enabled bridge inspection methodology and application[J]. Automation in Construction, 2018, 94(3): 112-126. [5] GRIP H F, LAM J S, BAYARD D S, et al. Flight control system for NASA's mars helicopter[C]//AIAA Scitech 2019 Forum, January 7-11, 2019, San Diego, CA, USA. Reston, Virginia: AIAA, 2019: 1289. [6] GRIP H F, SCHARF D P, MALPICA C A, et al. Guidance and control for a mars helicopter[C]//2018 AIAA Guidance, Navigation, and Control Conference. January 8-12, 2018, Kissimmee, Florida, USA. Reston, Virginia: AIAA, 2018: 1946. [7] GRIP H F, JOHNSON W, MALPICA C A, et al. Flight dynamics of a mars helicopter[C]//Journal of Guidance Control Dynamics, Sep. 12-15, 2017. Reston, Virginia: AIAA, 2017: 836-849. [8] 胡林强. 共轴高速直升机动力系统及其旋翼操纵系统研究[D]. 长春: 吉林大学, 2016. HU Linqiang. Research on the power system and rotor control system of coaxial high-speed helicopter[D]. Changchun: Jilin University, 2016. [9] 朱凯杰. 共轴双旋翼式火星飞行器主旋翼系统设计与试验研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. ZHU Kaijie. Design and experimental research of the main rotor system of the coaxial two-rotor Mars aircraft[D]. Harbin: Harbin Institute of Technology, 2021. [10] 袁夏明, 朱纪洪, 陈志刚, 等. 一种共轴式直升机操纵机构的运动学建模与分析[J]. 航空学报, 2013, 34(5): 988-1000. YUAN Xiaming, ZHU Jihong, CHEN Zhigang, et al. Kinematic modeling and analysis of a coaxial helicopter control mechanism[J]. Acta Aeronautica Sinica, 2013, 34(5): 988-1000. [11] 王涛. 小型共轴双旋翼无人机的设计及研究[D]. 北京: 北京交通大学, 2019. WANG Tao. Design and research of small coaxial two-rotor unmanned aerial vehicle[D]. Beijing: Beijing Jiaotong University, 2019. [12] 郭希娟, 蒙小刚, 王玉镇, 等. 一种新型共轴式直升机操纵机构运动学分析[J]. 机械工程学报, 2016, 52(1): 47-56. GUO Xijuan, MENG Xiaogang, WANG Yuzhen, et al. Kinematic analysis of a new type of coaxial helicopter control mechanism[J]. Journal of Mechanical Engineering, 2016, 52(1): 47-56. [13] 马双. 一种共轴混联机构运动学性能指标分析与仿真[D]. 秦皇岛: 燕山大学, 2015. MA Shuang. Analysis and simulation of kinematic performance index of a coaxial hybrid mechanism[D]. Qinhuangdao: Yanshan University, 2015. [14] 王学雷, 刘峰, 杜雄, 等. 直升机自动倾斜器等效并联机构自由度分析[J]. 机械设计与制造, 2014(1): 59-61. WANG Xuelei, LIU Feng, DU Xiong, et al. Degree of freedom analysis of the equivalent parallel mechanism of helicopter swashplate[J]. Machinery Design & Manufacture, 2014(1): 59-61. [15] 吕艺轩. 共轴双旋翼式火星飞行器转向系统设计与试验研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. LÜ Yixuan. Design and experimental research of the steering system of the coaxial two-rotor Mars aircraft[D]. Harbin: Harbin Institute of Technology, 2021. [16] FANKHAUSER P, BOUABDALLAH S, LEUTENEGGER S, et al. Modeling and decoupling control of the coax micro helicopter[C]//2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, Sept. 25-30, 2011, San Francisco, CA, USA. Piscataway, NJ: IEEE, 2011: 2223-2228. [17] BERMES C, LEUTENEGGER S, BOUABDALLAH S, et al. New design of the steering mechanism for a mini coaxial helicopter[C]//2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Sept 22-26, 2008, Nice, France. Piscataway, NJ: IEEE, 2008: 1236-1241. [18] BERMES C, SARTORI K, SCHARFROTH D, et al. Control of a coaxial helicopter with center of gravity steering[C]//Workshop Proceedings of SIMPAR 2008, Modeling, and Programming for Autonomous Robots, November 3-6, 2008, Venice, Italy. Berlin: Springer Verlag, 2008: 492-500. [19] YADAV P K, KALIARAJAN K. Dynamic model of a MAV with COG shifting mechanism[J]. IFAC Proceedings Volumes, 2014, 47(3): 380-385. [20] DENTON H, BENEDICT M, KANG H. Design, development, and flight testing of a tube-launched coaxial-rotor based micro air vehicle[J]. International Journal of Micro Air Vehicles, 2022, 14(1): 1-12. [21] 周洋. 两栖变质心共轴无人机带载荷动力学建模与控制研究[D]. 西安: 西安工业大学, 2023. ZHOU Yang. Dynamics modeling and control research of amphibious variable center of mass coaxial UAV with load[D]. Xi'an: Xi'an Technological University, 2023. [22] CHEN L, XIAO J, ZHENG Y, et al. Design, modeling, and control of a coaxial drone[J]. IEEE Transactions on Robotics, 2024, 40(4): 1650-1663. [23] 黄祥斌. 微小型无人旋翼飞行器的研究与设计[D]. 北京: 北京理工大学, 2016. HUANG Xiangbin. Research and design of micro and small unmanned rotorcraft[D]. Beijing: Beijing Institute of Technology, 2016. [24] DOMINGUEZ V H, REYES-OSORIO L A, OLLERVIDES-VAZQUEZ J, et al. Design and manufacture of a micro unmanned aerial vehicle[J]. Journal of Aerospace Engineering, 2023, 37(1): 1-9. [25] DOMINGUEZ V H, GARCIA-SALAZAR O, AMEZQUITA-BROOKS L A, et al. Micro coaxial drone: Flight dynamics, Simulation and Ground Testing[J]. Aerospace, 2022, 9(5): 245. [26] CHENG Z, PEI H. Flight transition control for ducted fan uav with saturation on control surfaces[C]//2021 International Conference on Unmanned Aircraft Systems, June 15-18, 2021, Athens, Greece. Piscataway, NJ: IEEE, 2021: 439-446. [27] PAN N, JIN R, XU C, et al. Canfly: A can-sized autonomous mini coaxial helicopter[C]//2023 IEEE/RSJ International Conference on Intelligent Robots and Systems Oct 1-5, 2023, Detroit, MI, USA. Piscataway, NJ: IEEE, 2023: 4989-4996. [28] PAULOS J, YIM M. An underactuated propeller for attitude control in micro air vehicles[C]//2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nov 3-7, 2013, Tokyo, Japan. Piscataway, NJ: IEEE, 2013: 1374-1379. [29] PAULOS J, YIM M. Flight performance of a swashplateless micro air vehicle[C]//2015 IEEE International Conference on Robotics and Automation, May 26-30, 2015, Seattle, WA, USA. Piscataway, NJ: IEEE, 2015: 5284-5289. [30] PAULOS J. Rotorcraft blade pitch control through torque modulation[J]. IEEE Transactions on Robotics, 2017, 33(1): 47-65. [31] PAULOS J, YIM M. Cyclic blade pitch control for small UAV without a swashplate[C]//AIAA Atmospheric Flight Mechanics Conference, January 9-13, 2017, Grapevine, Texas. Reston, Virginia: AIAA, 2018: 689-700. [32] PAULOS J, YIM M. Scalability of cyclic control without blade pitch actuators[C]//AIAA SciTech Forum, January 8-12, 2018, Kissimmee, Florida. Reston, Virginia: AIAA, 2018: 0532. [33] PAULOS J, CARAMER B, YIM M. Emulating a fully actuated aerial vehicle using two actuators[C]//2018 IEEE International Conference on Robotics and Automation, May 21-25, 2018, Brisbane, QLD, Australia. Piscataway, NJ: IEEE, 2018: 7011-7016. [34] 尹欣繁. 无斜盘微型无人直升机设计与飞行控制研究[D]. 长沙: 国防科技大学, 2017. YIN Xinfan. Design and flight control research of slant-free micro unmanned helicopter[D]. Changsha: National University of Defense Technology, 2017. [35] BOUABDALLAH S. System forming a two degrees of freedom actuator, for example for varying the pitch angle of the blades of a propeller during rotation: US, 188211730[P]. 2020-09-23. [36] 吴奇. 无斜盘单旋翼系统电磁调姿方法与试验研究[D]. 哈尔滨: 哈尔滨工业大学, 2022. WU Qi. Research on electromagnetic attitude adjustment method and experiment of slant-free single-rotor system[D]. Harbin: Harbin Institute of Technology, 2022. [37] BOUABDALLAH S, SIEGWART R, CAPRARI G. Design and control of an indoor coaxial helicopter[C]//2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Oct. 9-15, 2006, Beijing. Piscataway, NJ: IEEE, 2006: 2930-2935. [38] 张梓嵩. 共轴双旋翼无人机飞行动力学仿真与控制算法研究[D]. 沈阳: 沈阳理工大学, 2021. ZHANG Zisong. Research on flight dynamics simulation and control algorithm of coaxial two-rotor unmanned aerial vehicle[D]. Shenyang: Shenyang Ligong University, 2021. [39] LI S, WANG Y, TAN J, et al. Adaptive RBFNNs/integral sliding mode control for a quadrotor aircraft[J]. Neurocomputing, 2016, 216: 126-134. [40] RIOS H, FALCON R, GONZALEZ O A, et al. Continuous sliding-mode control strategies for quadrotor robust tracking: Real-time application[J]. IEEE Transactions on Industrial Electronics, 2019, 66(2): 1264-1272. [41] XIONG J J, ZHANG G B. Global fast dynamic terminal sliding mode control for a quadrotor uav[J]. ISA Transactions, 2017, 66: 233-240. [42] JIA Z, YU J, MEI Y. Integral backstepping sliding mode control for quadrotor helicopter under external uncertain disturbances[J]. Aerospace Science and Technology, 2017, 68: 299-307. [43] LABBADI M, CHERKAOUI M. Robust adaptive backstepping fast terminal sliding mode controller for uncertain quadrotor UAV[J]. Aerospace Science and Technology, 2019, 93: 1053-30. [44] 程维刚. 共轴倾转旋翼无人机动力学建模与控制器设计[D]. 大连: 大连理工大学, 2022. CHENG Weigang. Dynamics modeling and controller design of coaxial tiltrotor unmanned aerial vehicle[D]. Dalian: Dalian University of Technology, 2022. [45] VANDERSCHAFT A. L2-gain analysis of nonlinear-systems and nonlinear state feedback-h-infinity control[J]. IEEE Transactions on Automatic Control, 1992, 37(6): 770-784. [46] HUANG Y, JIA Y. Nonlinear robust h-infinity control for spacecraft body-fixed hovering around noncooperative target via modified theta -d method[J]. IEEE Transactions on Aerospace and Electronic, 2019, 55(5): 2451-2463. [47] RAFFO G V. Robust nonlinear control for path tracking of a quad-rotor helicopter[J]. Asian Journal of Control, 2015, 17(1): 142-156. [48] NOORMOHAMMADI-ASL A, ESRAFILIAN O, AHANGAR A M, et al. System identification and h-infinity-based control of quadrotor attitude[J]. Mechanical Systems and Signal Processing, 2020, 135: 1062-1131. [49] GULSHAN Z, ALI M, SHAH M, et al. A robust control design approach for altitude control and trajectory tracking of a quadrotor[J]. Electrical Engineering & Electromechanics, 2021, 5: 17-23. [50] ORTIZ J, MINCHALA L, REINOSO M. Nonlinear robust h-infinity PID controller for the multivariable system quadrotor[J]. IEEE Latin America Transactions, 2016, 14(3): 1176-1183. [51] SCHARFROTH D, BERMES S, BOUABDALLAH S, et al. Modeling, system identification and robust control of a coaxial micro helicopter[J]. Control Engineering Practice, 2010, 18(7): 700-711. [52] 宋梦洋. 小型折叠共轴旋翼无人机总体设计与仿真研究[D]. 南京: 南京航空航天大学, 2022. SONG Mengyang. Overall design and simulation research of small folding coaxial rotor unmanned aerial vehicle[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2022. [53] 吴东旭. 共轴双旋翼飞行器姿态控制研究[D]. 沈阳: 沈阳理工大学, 2020. WU Dongxu. Research on attitude control of coaxial two-rotor aircraft[D]. Shenyang: Shenyang Ligong University, 2020. [54] XU Y, LIU Z. Research on flight control method of micro co-axial rotor UAV based on reinforcement learning[C]//Proceedings of 2022 International Conference on Autonomous Unmanned Systems, Sep 24-25, 2022, Xi'an, China. Singapore: Springer Nature Singapore, 2023: 1308-1320. [55] 有德义, 郝永平. 共轴无人机扩展卡尔曼姿态控制研 究[J]. 装备机械, 2023, 46(3): 22-27. YOU Deyi, HAO Yongping. Research on extended kalman attitude control of coaxial UAV[J]. Equipment Machinery, 2023, 46(3): 22-27. [56] 汪首坤, 许永康, 陈志华, 等. 无人机移动自主回收着陆原理及控制方法[J]. 机械工程学报, 2024, 60(3): 34-46. WANG Shoukun, XU Yongkang, CHEN Zhihua, et al. Principle and control method of mobile autonomous recovery and landing for unmanned aerial vehicle[J]. Chinese Journal of Mechanical Engineering, 2024, 60(3): 34-46. [57] MENGOZZI S, ZANATT F, BARCHI, et al. Towards nano-Drones agile flight using deep reinforcement learning[C]//2024 IEEE International Conference on Omni-layer Intelligent Systems (COINS), July 29-31, 2024, London, United Kingdom. Piscataway, NJ: IEEE, 2024: 1-6. [58] 戴佳佳, 龚小溪, 汪俊. 面向飞机外表面检测任务的无人机覆盖路径规划方法[J]. 机械工程学报, 2023, 59(16): 243-253. DAI Jiajia, GONG Xiaoxi, WANG Jun. UAV coverage path planning method for aircraft outer surface inspection tasks[J]. Journal of Mechanical Engineering, 2023, 59(16): 243-253. [59] YANG S, XI L, HAO J, et al. Aerodynamic-parameter identification and attitude control of quad-rotor model with CIFER and adaptive LADRC[J]. Chinese Journal of Mechanical Engineering, 2021, 34(02): 160-169. [60] 肖遥, 冯岩. 碳纤维复合材料一体化成型及其在无人机领域的应用[J]. 现代工程科技, 2023, 2(7): 66-69. XIAO Yao, FENG Yan. Integrated molding of carbon fiber composite materials and its application in the field of UAVs[J]. Modern Engineering Science and Technology, 2023, 2(7): 66-69. [61] SEKIGUCHI A, SUNDARAM R. Lightweight and highly conductive carbon nanotube-copper composites[J]. Journal of Materials Science, 2021, 90(1): 40-44. [62] 张丽娇. 航空航天高强铝合金材料应用及发展趋势研究[J]. 新材料产业, 2021 (3): 7-11. ZHANG Lijiao. Research on the application and development trend of high-strength aluminum alloy materials in aerospace[J]. New Materials Industry, 2021(3): 7-11. [63] 段海滨. 2019年无人机热点回眸[J]. 科技导报, 2020, 38 (1): 170-187. DUAN Haibin. Review of UAV hotspots in 2019[J]. Science & Technology Review, 2020, 38 (1): 170-187. [64] 褚威, 李欣, 牛思源, 等. 3D打印技术在无人机生产制造中的应用[J]. 电子技术与软件工程, 2020, 12(2): 142-144. CHU Wei, LI Xin, NIU Siyuan, et al. Application of 3D printing technology in UAV production and manufacturing[J]. Electronic Technology & Software Engineering, 2020, 12(2): 142-144. [65] 熊婷, 钱波, 胡珍涛, 等. 基于连续纤维增材制造工艺的四旋翼无人机拓扑优化[J]. 工程塑料应用, 2023, 51(10): 76-84. XIONG Ting, QIAN Bo, HU Zhentao, et al. Topology optimization of quadrotor UAV based on continuous fiber additive manufacturing process[J]. Engineering Plastics Application, 2023, 51(10): 76-84. [66] MA Y, TAN J, WANG D, et al. Light-weight design method for force-performance-structure of complex structural part based co-operative optimization[J]. Chinese Journal of Mechanical Engineering, 2018, 31(2): 115-123. [67] 龚静, 冯笛恩, 夏林. 微型无人机发展现状及未来趋 势[J]. 飞行力学, 2023, 41(5): 12-22. GONG Jing, FENG Dien, XIA Lin. Development status and future trends of micro UAVs[J]. Flight Dynamics, 2023, 41 (5): 12-22. [68] 段海滨, 申燕凯, 赵彦杰, 等. 2020年无人机热点回 眸[J]. 科技导报, 2021, 39 (1): 233-247. DUAN Haibin, SHEN Yankai, ZHAO Yanjie, et al. Review of UAV hotspots in 2020[J]. Science & Technology Review, 2021, 39(1): 233-247. [69] 吕卉, 于海生, 孙昕. 模块化设计在无人机设计中的应用探析[J]. 科技风, 2021, 13: 5-6. LÜ Hui, YU Haisheng, SUN Xin. Analysis on the application of modular design in UAV design[J]. Technology Wind, 2021, 13: 5-6. [70] BUZZATTO J, MENDES P H, PERERA N, et al. The new dexterity omnirotor platform: Design, modeling, and control of a modular, versatile, all-terrain vehicle[C]//2021 IEEE/RSJ International Conference on Intelligent Robots and Systems, Sep. 27-Oct. 1, 2021, Prague, Czech Republic. Piscataway, NJ: IEEE, 2021: 6336-6343. [71] 刘刚田, 张家颐, 李林林, 等. 国内外智能农用无人机模块化关键技术研究[J]. 河北农机, 2023(16): 9-11. LIU Gangtian, ZHANG Jiayi, LI Linlin, et al. Research on key modular technologies of intelligent agricultural UAVs at home and abroad[J]. Hebei Agricultural Machinery, 2023(16): 9-11. [72] KRISHNAN P S. Trends in uav platforms and technologies[J]. Journal of Aerospace Sciences and Technologies, 2023, 61(1): 22-31. |