机械工程学报 ›› 2025, Vol. 61 ›› Issue (15): 105-120.doi: 10.3901/JME.2025.15.105
• 综述 • 上一篇
高晗1, 蒲琪然1, 赵永生1, 张茂林2, 吴紫涧1, 程宝平1, 王柏村2
收稿日期:
2024-11-25
修回日期:
2025-01-14
发布日期:
2025-09-28
作者简介:
高晗,女,1997年出生,博士。主要研究方向为人工智能、脑机接口及其在机器人领域的应用。E-mail:gaohan@cmhi.chinamobile.com;蒲琪然,女,1989年出生,硕士。主要研究方向为智能机器人系统、人机交互、脑机接口及其在机器人领域的应用。E-mail:puqiran@cmhi.chinamobile.com;赵永生,男,1989年出生,博士。主要研究方向为智能机器人环境感知、手眼协作、视觉伺服等关键技术。E-mail:zhaoyongsheng@cmhi.chinamobile.com;张茂林,男,2001年出生,博士研究生。主要研究方向为脑机接口、人机协作。E-mail:maolin_zhang@zju.edu.cn;吴紫涧,女,1989年出生,博士。主要研究方向为智能制造、工业机器人。E-mail:wuzijian@cmhi.chinamobile.com;程宝平(通信作者),男,1980年出生,博士。主要研究方向为多媒体通信,智能机器人系统,脑机接口。E-mail:chengbaoping@cmhi.chinamobile.com;王柏村,男,1990年出生,博士。主要研究方向为智能制造,人机协作,脑机接口。E-mail:baicunw@zju.edu.cn
基金资助:
GAO Han1, PU Qiran1, ZHAO Yongsheng1, ZHANG Maolin2, WU Zijian1, CHENG Baoping1, WANG Baicun2
Received:
2024-11-25
Revised:
2025-01-14
Published:
2025-09-28
摘要: 非侵入式脑机接口(Brain-computer interface, BCI)技术作为一种新兴的人机交互方式,在机器人控制领域展现了广阔的应用前景。首先概述其发展背景与重要性,并深入探讨脑电信号的生理基础,阐明脑电图(Electroencephalography, EEG)以其无创性和便捷性成为BCI系统的常用测量手段。随后,分析了典型BCI范式的优劣特点和适用场景——包括主动式如运动想象、反应式如稳态视觉诱发电位(Steady-state visual evoked potential, SSVEP)、事件相关电位P300,以及结合多种范式优势的混合范式,展示了这些范式如何实现复杂且高效的机器人控制任务。此外,系统地介绍了EEG信号采集、预处理及模式识别的关键步骤,强调了深度学习在提高解码精度方面的作用,同时也指出了其面临的挑战,如数据量需求大和模型解释性差。最后,总结了BCI技术的发展趋势和研究挑战,提出了推动非侵入式BCI技术在实际机器人控制应用中进一步发展的方向。综上所述,不仅对非侵入式BCI技术在机器人控制领域应用进行了探讨,还强调了该技术在未来可能带来的变革性影响,为后续研究提供参考和启发。
中图分类号:
高晗, 蒲琪然, 赵永生, 张茂林, 吴紫涧, 程宝平, 王柏村. 非侵入式脑机接口在机器人控制领域的研究综述[J]. 机械工程学报, 2025, 61(15): 105-120.
GAO Han, PU Qiran, ZHAO Yongsheng, ZHANG Maolin, WU Zijian, CHENG Baoping, WANG Baicun. A Review of Non-invasive Brain-computer Interface Research in Robotic Control[J]. Journal of Mechanical Engineering, 2025, 61(15): 105-120.
[1] 中华人民共和国国家统计局.中华人民共和国2023年国民经济和社会发展统计公报[EB/OL].(2024-02-29) https://www.stats.gov.cn/sj/zxfb/202402/t20240228_1947915.html.National Bureau of Statistics of China. Statistical communiquéof the People's Republic of China on the2023 national economic and social development[EB/OL].(2024-02-29) https://www.stats.gov.cn/sj/zxfb/202402/t20240228_1947915.html. [2] 何畅,熊蔡华,陈文斌.脑损伤上肢康复机器人及其临床应用研究[J].机械工程学报,2023,59(19):65-80.HE Chang,XIONG Caihua,CHEN Wenbin. Review on upper-limb rehabilitation robots for patients with brain injury and clinical applications[J]. Journal of Mechanical Engineering,2023,59(19):65-80. [3] HRAMOV A E,MAKSIMENKO V A,PISARCHIK A N.Physical principles of brain-computer interfaces and their applications for rehabilitation,robotics and control of human brain states[J]. Physics Reports,2021,918:1-133. [4] ZHOU YAJUN,YU T Y,GAO W,et al. Shared three-dimensional robotic arm control based on asynchronous BCI and computer vision[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2023,31:3163-3175. [5] ALTAHERI H,MUHAMMAD G,ALSULAIMAN M,et al. Deep learning techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals:A review[J]. Neural Computing and Applications,2023,35(20):14681-14722. [6] 张德雨,刘思宇,张健,等.基于动态视觉范式与实时反馈校验的脑控机械臂[J].机械工程学报,2023,59(21):157-166.ZHANG Deyu,LIU Siyu,ZHANG Jian,et al. Brain controlled manipulator based on dynamic visual paradigm and real-time feedback[J]. Journal of Mechanical Engineering,2023,59(21):157-166 [7] 姚玉峰,裴硕,郭军龙,等.上肢康复机器人研究综述[J].机械工程学报,2024,60(11):115-134.YAO Yufeng,PEI Shuo,GUO Junlong,et al. Review of research on upper-limb rehabilitation training robots[J].Journal of Mechanical Engineering, 2024, 60(11):115-134 [8] MAO Xiaoqian,LI Mengfan,LI Wei,et al. Progress in EEG-based brain robot interaction systems[J].Computational Intelligence and Neuroscience,2017,2017:1742862. [9] ZHANG J C,WANG M. A survey on robots controlled by motor imagery brain-computer interfaces[J]. Cognitive Robotics,2021,1:12-24. [10] LIU S C,WANG L H,GAO R X. Cognitive neuroscience and robotics:Advancements and future research directions[J]. Robotics and Computer-Integrated Manufacturing,2024,85:102610. [11] BALL T,KERN M,MUTSCHLER I,et al. Signal quality of simultaneously recorded invasive and non-invasive EEG[J]. NeuroImage,2009,46(3):708-716. [12] BINNIE C D,PRIOR P F. Electroencephalography[J].Journal of Neurology,Neurosurgery&Psychiatry,1994,57(11):1308-1319. [13] STAM C J. Use of magnetoencephalography (MEG) to study functional brain networks in neurodegenerative disorders[J]. Journal of the Neurological Sciences,2010,289(1-2):128-134. [14] DEYOE E A, BANDETTINI P, NEITZ J, et al.Functional magnetic resonance imaging (fMRI) of the human brain[J]. Journal of Neuroscience Methods,1994,54(2):171-187. [15] FERRARI M,QUARESIMA V. A brief review on the history of human functional near-infrared spectroscopy (f NIRS) development and fields of application[J].Neuro Image,2012,63(2):921-935. [16] AGGARWAL S,CHUGH N. Review of machine learning techniques for EEG based brain computer interface[J].Archives of Computational Methods in Engineering,2022,29(5):3001-3020. [17] POOJA,PAHUJA S K,VEER K. Recent approaches on classification and feature extraction of EEG signal:A review[J]. Robotica,2022,40(1):77-101. [18] PANAGOU S,NEUMANN W P,FRUGGIERO F. A scoping review of human robot interaction research towards Industry 5.0 human-centric workplaces[J].International Journal of Production Research,2024,62(3):974-990. [19] LICARDO J T, DOMJAN M, OREHOVAČKI T.Intelligent robotics-A systematic review of emerging technologies and trends[J]. Electronics,2024,13(3):542. [20] OBAIGBENA A,LOTTU O A,UGWUANYI E D,et al.AI and human-robot interaction:A review of recent advances and challenges[J]. GSC Advanced Research and Reviews,2024,18(2):321-330. [21] LIU Y L, LI Z J, ZHANG T, et al. Brain-robot interface-based navigation control of a mobile robot in corridor environments[J]. IEEE Transactions on Systems,Man,and Cybernetics:Systems,2020,50(8):3047-3058. [22] IÁÑEZ E,AZORÍN J M,ÚBEDA A,et al. Mental tasks-based brain-robot interface[J]. Robotics and Autonomous Systems,2010,58(12):1238-1245. [23] GANDHI V,PRASAD G,COYLE D,et al. EEG-based mobile robot control through an adaptive brain-robot interface[J]. IEEE Transactions on Systems,Man,and Cybernetics:Systems,2014,44(9):1278-1285. [24] LOTZE M,HALSBAND U. Motor imagery[J]. Journal of Physiology-Paris,2006,99(4):386-395. [25] NORCIA A M,APPELBAUM L G,ALES J M,et al. The steady-state visual evoked potential in vision research:A review[J]. Journal of Vision,2015,15(6):4. [26] KALRA J,MITTAL P,MITTAL N,et al. How visual stimuli evoked P300 is transforming the brain-computer interface landscape:A PRISMA compliant systematic review[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2023,31:1429-1439. [27] ZHANG Y C,RAJABI N,TALEB F,et al. Mind meets robots:A review of EEG-based brain-robot interaction systems[J]. International Journal of Human-Computer Interaction,2025,1-32. [28] 尼克尔斯.神经生物学:从神经元到脑[M]. 5版.北京:科学出版社,2014.NICHOLLS J G. From neuron to brain[M]. 5th ed.Beijing:Science Press,2014. [29] GREENFIELD L J,GEYER J D,CARNEY P R. Reading EEGs:A practical approach[M]. Philadelphia:Lippincott Williams&Wilkins,2012. [30] SALAMON G,HUANG Y P. Radiologic anatomy of the brain[M]. Berlin:Springer Science&Business Media,2012. [31] MOLENBERGHS P,CUNNINGTON R,MATTINGLEY J B. Brain regions with mirror properties:A meta-analysis of 125 human f MRI studies[J]. Neuroscience&Biobehavioral Reviews,2012,36(1):341-349. [32] BAŞAR E,BAŞAR-EROĞLU C,KARAKAŞS,et al.Are cognitive processes manifested in event-related gamma,alpha,theta and delta oscillations in the EEG?[J].Neuroscience Letters,1999,259(3):165-168. [33] 申牧.脑电节律时空模式的特征提取与识别研究[D].北京:北京邮电大学,2024.SHEN Mu. Research on the feature extraction and identification from the spatiotemporal patterns of brain oscillations[D]. Beijing:Beijing University of Posts and Telecommunications,2024. [34] HENRY J C. Electroencephalography:Basic principles,clinical applications,and related fields,fifth edition[J].Neurology,2006,67(11):2092-2092-a. [35] MÜLLER-PUTZ G,LEEB R,TANGERMANN M,et al.Towards noninvasive hybrid brain-computer interfaces:Framework,practice,clinical application,and beyond[J].Proceedings of the IEEE,2015,103(6):926-943. [36] QIU S Y,LI Z J,HE W,et al. Brain-machine interface and visual compressive sensing-based teleoperation control of an exoskeleton robot[J]. IEEE Transactions on Fuzzy Systems,2017,25(1):58-69. [37] LU R Q,LI Z J,SU C Y,et al. Development and learning control of a human limb with a rehabilitation exoskeleton[J]. IEEE Transactions on Industrial Electronics,2014,61(7):3776-3785. [38] 伏云发,王越超,李洪谊,等.直接脑控机器人接口技术[J].自动化学报,2012,38(8):1229-1246.FU Yunfa,WANG Yuechao,LI Hongyi,et al. Direct brain-controlled robot interface technology[J]. Acta Automatica Sinica,2012,38(8):1229-1246. [39] 何峰,董博文,韩锦,等.基于头皮脑电的游戏型脑机接口应用研究综述[J].电子与信息学报,2022,44(2):415-423.HE Feng,DONG Bowen,HAN Jin,et al. Advances in game-based brain-computer interface applications using scalp EEG:A review[J]. Journal of Electronics&Information Technology,2022,44(2):415-423. [40] 王鹏宇.基于快速序列视觉呈现的脑机接口技术研究[D].秦皇岛:燕山大学,2023.WANG Pengyu. Research on brain-computer interface technology based on rapid serial visual presentation[D].Qinhuangdao:Yanshan University,2023. [41] 徐宝国,何小杭,魏智唯,等.基于运动想象脑电的机器人连续控制系统研究[J].仪器仪表学报,2018,39(9):10-19.XU Baoguo,HE Xiaohang,WEI Zhiwei,et al. Research on continuous control system for robot based on motor imagery EEG[J]. Chinese Journal of Scientific Instrument,2018,39(9):10-19 [42] TANAKA K, MATSUNAGA K, WANG H O.Electroencephalogram-based control of an electric wheelchair[J]. IEEE Transactions on Robotics,2005,21(4):762-766. [43] CHOI K. Control of a vehicle with EEG signals in real-time and system evaluation[J]. European Journal of Applied Physiology,2012,112(2):755-766. [44] ALJALAL M, DJEMAL R, IBRAHIM S. Robot navigation using a brain computer interface based on motor imagery[J]. Journal of Medical and Biological Engineering,2019,39(4):508-522. [45] CHAE Y, JEONG J, JO S. Toward brain-actuated humanoid robots:Asynchronous direct control using an EEG-based BCI[J]. IEEE Transactions on Robotics,2012,28(5):1131-1144. [46] QIAO Y,SHI R,GUO F,et al. A hierarchical intelligent rehabilitation robotic system based on MI-EEG[C]//202443rd Chinese Control Conference (CCC). 2024:3389-3394. [47] LAWHERN V J,SOLON A J,WAYTOWICH N R,et al. EEGNet:A compact convolutional neural network for EEG-based brain-computer interfaces[J]. Journal of Neural Engineering,2018,15(5):056013. [48] PLECHAWSKA-WOJCIK M, WOLSZCZAK P,CECHOWICZ R,et al. Construction of neural nets in brain-computer interface for robot arm steering[C]//20169th International Conference on Human System Interactions (HSI). 2016:1-8. [49] BOUSSETA R,EL OUAKOUAK I,GHARBI M,et al.EEG based brain computer interface for controlling a robot arm movement through thought[J]. IRBM,2018,39(2):129-135. [50] LIU Yiliang, SU Wenbin, LI Zhijun, et al.Motor-imagery-based teleoperation of a dual-arm robot performing manipulation tasks[J]. IEEE Transactions on Cognitive and Developmental Systems,2019,11(3):414-424. [51] XU Y,DING C,SHU X K,et al. Shared control of a robotic arm using non-invasive brain-computer interface and computer vision guidance[J]. Robotics and Autonomous Systems,2019,115:121-129. [52] AKCE A,JOHNSON M,BRETL T. Remote teleoperation of an unmanned aircraft with a brain-machine interface:Theory and preliminary results[C]//2010 IEEE International Conference on Robotics and Automation (ICRA). 2010:5322-5327. [53] LAFLEUR K,CASSADY K,DOUD A,et al. Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain-computer interface[J]. Journal of Neural Engineering,2013,10(4):046003. [54] VIJAYENDRA A,SAKSENA S K,VISHWANATH R M, et al. A performance study of 14-channel and5-channel EEG systems for real-time control of unmanned aerial vehicles (UAVs)[C]//2018 Second IEEE International Conference on Robotic Computing (IRC).Laguna Hills,CA,USA,2018:183-188. [55] 邓志东,李修全,郑宽浩,等.一种基于SSVEP的仿人机器人异步脑机接口控制系统[J].机器人,2011,33(2):129-135.DENG Zhidong,LI Xiuquan,ZHENG Kuanhao,et al. A humanoid robot control system with SSVEP-based asynchronous brain-computer interface[J]. Robot,2011,33(2):129-135. [56] GÜNEYSU A,AKIN H L. An SSVEP based BCI to control a humanoid robot by using portable EEG device[C]//201335th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2013:6905-6908. [57] MANDEL C,LÜTH T,LAUE T,et al. Navigating a smart wheelchair with a brain-computer interface interpreting steady-state visual evoked potentials[C]//2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2009:1118-1125. [58] AI J K,MENG J J,MAI X M,et al. BCI control of a robotic arm based on SSVEP with moving stimuli for reach and grasp tasks[J]. IEEE Journal of Biomedical and Health Informatics,2023,27(8):3818-3829. [59] WANG Y,ZHANG X,LI K,et al. Humanoid robot control system based on AR-SSVEP[C]//20206th International Conference on Computing and Artificial Intelligence (ICCAI). New York,NY,USA:Association for Computing Machinery,2020:529-533. [60] ZHANG Y X,GAO Q,SONG Y,et al. Implementation of an SSVEP-based intelligent home service robot system[J]. Technology and Health Care,2021,29(3):541-556. [61] MULLER-PUTZ G R,PFURTSCHELLER G. Control of an electrical prosthesis with an SSVEP-based BCI[J].IEEE Transactions on Biomedical Engineering,2008,55(1):361-364. [62] LIN C G,DENG X Y,YU Z L,et al. A SSVEP-based BCI for controlling a 4-DOF robotic manipulator[C]//2019IEEE International Conference on Systems,Man and Cybernetics (SMC). 2019:2174-2179. [63] CHEN X G,ZHAO B,WANG Y J,et al. Control of a7-DOF robotic arm system with an SSVEP-based BCI[J].International Journal of Neural Systems,2018,28(8):1850018. [64] FU R G,FENG X L,WANG S W,et al. Control of the robotic arm system with an SSVEP-based BCI[J].Measurement Science and Technology,2024,35(5):055702. [65] ISHIZUKA K, KOBAYASHI N, SAITO K. High accuracy and short delay 1ch-SSVEP quadcopter-BMI using deep learning[J]. Journal of Robotics and Mechatronics,2020,32(4):738-744. [66] MEI J,XU M P,WANG L J,et al. Using SSVEP-BCI to continuous control a quadcopter with 4-DOF motions[C]//202042nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).2020:4745-4748. [67] ERGEN M,MARBACH S,BRAND A,et al. P3 and delta band responses in visual oddball paradigm in schizophrenia[J]. Neuroscience Letters,2008,440(3):304-308. [68] LI M F,LI W,ZHAO J,et al. A P300 model for cerebota mind-controlled humanoid robot[J]. Robot Intelligence Technology and Applications,2014,274:495-502. [69] LIU J C,CHOU H C,CHEN C H,et al. Time-shift correlation algorithm for P300 event related potential brain-computer interface implementation[J].Computational Intelligence and Neuroscience,2016,2016:3039454. [70] TANG J S,ZHOU Z T,LIU Y D. A 3D visual stimuli based P300 brain-computer interface:For a robotic arm control[C]//2017 International Conference on Artificial Intelligence,Automation and Control Technologies. New York,NY,USA:Association for Computing Machinery,2017:1-6. [71] BERALDO G,TORTORA S,MENEGATTI E. Towards a brain-robot interface for children[C]//2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). 2019:2799-2805. [72] 戴廷飞,刘邈,叶阳阳,等.人机共享控制机器人系统的应用与发展[J].仪器仪表学报,2019,40(3):62-73.DAI Tingfei,LIU Miao,YE Yangyang,et al. Application and development of human-machine shared control robot system[J]. Chinese Journal of Scientific Instrument,2019,40(3):62-73. [73] LI H Q,BI L Z,LI X Y,et al. Robust predictive control for EEG-based brain-robot teleoperation[J]. IEEE Transactions on Intelligent Transportation Systems,2024,25(8):9130-9140. [74] 程杨,潘尚峰.一种多自由度康复外骨骼机械臂的虚拟分解控制[J].机械工程学报,2022,58(9):21-30.CHENG Yang,PAN Shangfeng. Virtual decomposition control of a multi-degree-of-freedom rehabilitation exoskeleton robotic arm[J]. Journal of Mechanical Engineering,2022,58(9):21-30. [75] HONG J. Multimodal brain-computer interface combining synchronously electroencephalography and electromyography[J]. Journal of Intelligent&Fuzzy Systems,2017,33(6):3355-3362. [76] JIANG J, ZHOU Z T, YIN E W, et al. Hybrid brain-computer interface (BCI) based on the EEG and EOG signals[J]. Bio-Medical Materials and Engineering,2014,24(6):2919-2925. [77] BENEDEK M,KAERNBACH C. A continuous measure of phasic electrodermal activity[J]. Journal of Neuroscience Methods,2010,190(1):80-91. [78] LI J J,WANG Q. Multi-modal bioelectrical signal fusion analysis based on different acquisition devices and scene settings:Overview,challenges,and novel orientation[J].Information Fusion,2022,79:229-247. [79] AN Y,WONG J,LING S H. Development of real-time brain-computer interface control system for robot[J].Applied Soft Computing,2024,159:111648. [80] MAO X Q,LI W,LEI C W,et al. A brain-robot interaction system by fusing human and machine intelligence[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2019,27(3):533-542. [81] HAN J,XU M P,WANG Y J,et al.'Write'but not'spell'Chinese characters with a BCI-controlled robot[C]//202042nd Annual International Conference of the IEEE Engineering in Medicine&Biology Society (EMBC).2020:4741-4744. [82] ZHANG R H,LEE S,HWANG M,et al. NOIR:Neural signal operated intelligent robots for everyday activities[C]//2023 Conference on Robot Learning (CoRL). PMLR,2023,229:1737-1760. [83] MYSLOBODSKY M S,COPPOLA R,BAR-ZIV J,et al.Adequacy of the international 10-20 electrode system for computed neurophysiologic topography[J]. Journal of Clinical Neurophysiology,1990,7(4):507-518. [84] ANBARASAN R, GOMEZ CARMONA D,MAHENDRAN R. Human taste-perception:Brain computer interface (BCI) and its application as an engineering tool for taste-driven sensory studies[J]. Food Engineering Reviews,2022,14(3):408-434. [85] BAMDAD M, ZARSHENAS H, AUAIS M A.Application of BCI systems in neurorehabilitation:A scoping review[J]. Disability and Rehabilitation:Assistive Technology,2015,10(5):355-364. [86] 赵倩,谭浩然,王西岳,等.脑电采集电极研究进展[J].科学技术与工程,2021,21(15):6097-6104.ZHAO Qian,TAN Haoran,WANG Xiyue,et al. Research progress of the electrode for EEG acquisition[J]. Science Technology and Engineering,2021,21(15):6097-6104. [87] 吴晓婷,裴为华,王毅军,等.应用于脑机接口的便捷式头皮电极[J].人工智能,2021(6):16-25.WU Xiaoting,PEI Weihua,WANG Yijun,et al. Portable scalp electrodes applied to brain-computer interfaces[J].Artificial Intelligence,2021(6):16-25. [88] USAKLI A B. Improvement of EEG signal acquisition:An electrical aspect for state of the art of front end[J].Computational Intelligence and Neuroscience,2010,2010:e630649. [89] KUMAR J S, BHUVANESWARI P. Analysis of electroencephalography (EEG) signals and its categorization-A study[J]. Procedia Engineering,2012,38:2525-2536. [90] SHOKA A,DESSOUKY M,EL-SHERBENY A,et al.Literature review on EEG preprocessing, feature extraction,and classifications techniques[J]. Menoufia Journal of Electronic Engineering Research,2019,28:292-299. [91] IRIARTE J,URRESTARAZU E,VALENCIA M,et al.Independent component analysis as a tool to eliminate artifacts in EEG:A quantitative study[J]. Journal of Clinical Neurophysiology,2003,20(4):249-257. [92] GUERRERO-MOSQUERA C,NAVIA-VAZQUEZ A.Automatic removal of ocular artefacts using adaptive filtering and independent component analysis for electroencephalogram data[J]. Signal Processing,IET,2012,6:99-106. [93] 张锐,刘家俊,陈明明,等.基于小波变换-集合经验模态分解的单通道脑电信号眼电伪迹自动去除研究[J].生物医学工程学杂志,2021,38(3):473-482.ZHANG Rui,LIU Jiajun,CHEN Mingming,et al.Research on automatic removal of ocular artifacts from single channel electroencephalogram signals based on wavelet transform and ensemble empirical mode decomposition[J]. Journal of Biomedical Engineering,2021,38(3):473-482. [94] GOSHVARPOUR A, GOSHVARPOUR A. Novel high-dimensional phase space features for EEG emotion recognition[J]. Signal,Image and Video Processing,2023,17(2):417-425. [95] MOGNON A,JOVICICH J,BRUZZONE L,et al.ADJUST:An automatic EEG artifact detector based on the joint use of spatial and temporal features[J].Psychophysiology,2011,48(2):229-240. [96] LOTTE F,BOUGRAIN L,CICHOCKI A,et al. A review of classification algorithms for EEG-based braincomputer interfaces:A 10 year update[J]. Journal of Neural Engineering,2018,15(3):031005. [97] 高之琳.脑电多尺度特征分析算法研究及其应用[D].南京:东南大学,2022.GAO Zhilin. research on algorithms of multi-scale EEG analysis and the applications[D]. Nanjing:Southeast University,2022. [98] AGGARWAL S,CHUGH N. Review of machine learning techniques for EEG based brain computer interface[J].Archives of Computational Methods in Engineering,2022,29(5):3001-3020. [99] BOONYAKITANONT P,LEK-UTHAI A,CHOMTHO K,et al. A review of feature extraction and performance evaluation in epileptic seizure detection using EEG[J].Biomedical Signal Processing and Control,2020,57:101702. [100] LIU G Y, TIAN L, ZHOU W D. Multiscale time-frequency method for multiclass motor imagery brain computer interface[J]. Computers in Biology and Medicine,2022,143:105299. [101] SIULY,WANG H,ZHANG Y C. Detection of motor imagery EEG signals employing Naïve Bayes based learning process[J]. Measurement,2016,86:148-158. [102] KRISHNA D H, PASHA I A, SAVITHRI T S.Autonomuos robot control based on EEG and cross-correlation[C]//201610th International Conference on Intelligent Systems and Control (ISCO). 2016:1-4. [103] HORKI P,SOLIS-ESCALANTE T,NEUPER C,et al.Combined motor imagery and SSVEP based BCI control of a 2 DoF artificial upper limb[J]. Medical&Biological Engineering&Computing,2011,49(5):567-577. [104] LU W,WEI Y N,YUAN J X,et al. Tractor assistant driving control method based on EEG combined with RNN-TL deep learning algorithm[J]. IEEE Access,2020,8:163269-163279. [105] JEONG J H,SHIM K H,KIM D J,et al. Trajectory decoding of arm reaching movement imageries for brain-controlled robot arm system[C]//201941st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2019:5544-5547. [106] VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[C]//30th Conference on Neural Information Processing Systems (Neur IPS). 2017:5998-6008. [107] SHI E Z,YU S G,KANG Y Q,et al. MEET:A multi-band EEG Transformer for brain states decoding[J]. IEEE Transactions on Biomedical Engineering,2023:1-12. [108] SUN J Y,XIE J,ZHOU H H. EEG classification with Transformer-based models[C]//2021 IEEE 3rd Global Conference on Life Sciences and Technologies (LifeTech). 2021:92-93. [109] LI Z G,ZHANG R K,ZENG Y,et al. MST-net:A multi-scale swin transformer network for EEG-based cognitive load assessment[J]. Brain Research Bulletin,2024,206:110834. [110] DOSE H,MØLLER J S,IVERSEN H K,et al. An end-to-end deep learning approach to MI-EEG signal classification for BCIs[J]. Expert Systems with Applications,2018,114:532-542. [111] ZHANG C, KIM Y K, ESKANDARIAN A.EEG-inception:An accurate and robust end-to-end neural network for EEG-based motor imagery classification[J]. Journal of Neural Engineering,2021,18(4):046014. [112] HAN Z C,CHANG H L,ZHOU X Y,et al. E2ENNet:An end-to-end neural network for emotional braincomputer interface[J]. Frontiers in Computational Neuroscience,2022,16:942979. [113] SONG Y H,ZHENG Q Q,LIU B C,et al. EEG conformer:Convolutional transformer for EEG decoding and visualization[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2023,31:710-719. [114] JEONG J H, SHIM K H, KIM D J, et al.Brain-controlled robotic arm system based on multi-directional CNN-BiLSTM network using EEG signals[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2020,28(5):1226-1238. [115] LU Y Z,WANG H,FENG N S,et al. Online interaction method of mobile robot based on single-channel EEG signal and end-to-end CNN with residual block model[J].Advanced Engineering Informatics,2022,52:101595. [116] WANG Y,ZHANG M X,LI M,et al. Development of a humanoid robot control system based on AR-BCI and SLAM navigation[J]. Cognitive Neurodynamics,2024,18(5):2857-2870. |
[1] | 张德雨, 刘思宇, 张健, 闫天翼, 吴景龙, 明致远. 基于动态视觉范式与实时反馈校验的脑控机械臂[J]. 机械工程学报, 2023, 59(21): 157-166. |
[2] | 周达, 张昕, 邹云峰, 倪玉玲, 王德玉. 基于T-F聚类和PRPD图谱分析的配网电缆局部放电类型识别研究*[J]. 电气工程学报, 2022, 17(2): 235-242. |
[3] | 梁野, 裘乐淼, 刘晓健, 张树有, 谭建荣. 基于设计情境与脑机反馈融合的产品设计知识需求感知技术[J]. 机械工程学报, 2020, 56(7): 151-163. |
[4] | 梁志豪, 巫江虹, 谢子立. 变频空调实际运行模式识别及数据挖掘[J]. 机械工程学报, 2019, 55(6): 194-202. |
[5] | 刘国梁, 余建波. 基于知识深度置信网络的加工粗糙度预测[J]. 机械工程学报, 2019, 55(20): 94-106. |
[6] | 任士鑫, 王卫群, 侯增广, 陈霸东, 石伟国, 王佳星, 梁旭. 基于改进共空间模式与视觉反馈的闭环脑机接口[J]. 机械工程学报, 2019, 55(11): 28-35. |
[7] | 陶学文, 奕伟波, 陈龙, 何峰, 綦宏志. 复合肢体想象动作脑-机接口中黎曼核支持向量机递归特征筛选方法[J]. 机械工程学报, 2019, 55(11): 131-137. |
[8] | 郭旭,牧继清,王庆军,雍明超,王伟杰,毛丽娜. 基于工频同步信号的三相共筒式GIS局部放电识别方法[J]. 电气工程学报, 2018, 13(4): 46-52. |
[9] | 汪若尘, 叶青, 孙泽宇, 周卫琪, 陈龙. 液压互联ISD悬架系统模式切换研究*[J]. 机械工程学报, 2017, 53(6): 110-115. |
[10] | 徐光华;张锋;王晶;谢俊;李叶平;张四聪. 面向智能轮椅脑机导航的高频组合编码稳态视觉诱发电位技术研究[J]. , 2013, 49(6): 21-29. |
[11] | 姚玉峰;苏衍宇;黄博. 面向服务机械臂有效操作特征提取的示教方法[J]. , 2013, 49(3): 10-17. |
[12] | 杨庆;陈桂明;童兴民;何庆飞. 增量式局部切空间排列算法在滚动轴承故障诊断中的应用[J]. , 2012, 48(5): 81-86. |
[13] | 杨大鹏;赵京东;李楠;姜力;刘宏. 基于预抓取模式识别的假手肌电控制方法[J]. , 2012, 48(15): 1-8. |
[14] | 韦进文;陈燕玲;覃禾群;郭俊杰. 基于广义叉积鲁棒性的识别式数据拟合[J]. , 2011, 47(14): 7-12. |
[15] | 孙汉旭;刘大亮;贾庆轩;张延恒. 基于容错策略的球形机器人控制系统[J]. , 2010, 46(11): 89-95. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||