机械工程学报 ›› 2025, Vol. 61 ›› Issue (13): 360-385.doi: 10.3901/JME.2025.13.360
• 制造工艺与装备 • 上一篇
李可欣1, 任莹晖1, 李伟1, 黄向明1, 陈根余1,2
收稿日期:
2024-07-14
修回日期:
2025-01-06
发布日期:
2025-08-09
作者简介:
李可欣,女,1997年出生,博士研究生。主要研究方向为多能场辅助微细磨削。E-mail:alicelee@hnu.edu.cn;任莹晖(通信作者),女,1979年出生,博士,教授,博士研究生导师。主要研究方向为难加工材料精密超精密加工技术。E-mail:rebecca_ryh@hnu.edu.cn
基金资助:
LI Kexin1, REN Yinghui1, LI Wei1, HUANG Xiangming1, CHEN Genyu1,2
Received:
2024-07-14
Revised:
2025-01-06
Published:
2025-08-09
摘要: 为实现难加工材料微小零件或表面功能微结构的几何和性能一体化高性能制造,多种能场辅助微细加工新原理、新方法迭出不穷。然而,能场耦合作用对于微结构加工表面创成机制尚不明确,难以为其工业化应用提供精准指导。首先分析了微小零件和表面功能微结构加工现存技术瓶颈,再讨论了电化学、激光、超声等多种能场对改善材料可加工性、提升加工效率与质量等方面的协同作用机理。并以典型能场辅助微细磨削技术为例,对能场辅助微细磨削技术工艺原理、应用特点及现存难题展开综述。展望微小零件或表面功能微结构的高性能制造在能场协同方法创新、工艺装备开发等方面的未来工作,以期为学术和工业界提供理论指导与技术支持。
中图分类号:
李可欣, 任莹晖, 李伟, 黄向明, 陈根余. 多能场辅助微细磨削技术研究进展[J]. 机械工程学报, 2025, 61(13): 360-385.
LI Kexin, REN Yinghui, LI Wei, HUANG Xiangming, CHEN Genyu. Recent Progress of Multi-field Assisted Micro-grinding Technology[J]. Journal of Mechanical Engineering, 2025, 61(13): 360-385.
[1] KAGERMANN H,WAHLSTER W,HELBIG J. Recommendations for implementing the strategic initiative Industrie 4.0:Securing the future of German manufacturing industry[R]. Forschungsunion,Acatech,München,2013. [2] FORESIGHT. The future of manufacturing:A new era of opportunity and challenge for the UK[R]. Project Report. London; The Government Office for Science. 2013. [3] HAN S Y. Industry innovation 3.0[J]. APO News,2014,44(4):8. [4] 宋学官,李昆鹏,胡正国,等. 高性能制造:设计与制造的协同机制[J]. 机械工程学报,2023,60(1):2-12. SONG Xueguan,LI Kunpeng,HU Zhengguo,et al. High performance manufacturing:Collaborative mechanisms for design and manufacturing[J]. Journal of Mechanical Engineering,2023,60(1):2-12. [5] AURICH J C,KIRSCH B,SETTI D,et al. Abrasive processes for micro parts and structures[J]. CIRP Annals - Manufacturing Technology,2019,68(2):653-676. [6] 唐恒,汤勇,伍晓宇,等. 表面功能结构制造研究的新进展与发展趋势[J]. 机械工程学报,2022,58(11) :183-199. TANG Heng,TANG Yong,WU Xiaoyu,et al. New progress and development trend of manufacturing of functional surface structure[J]. Journal of Mechanical Engineering,2022,58(11):183-199. [7] 吴春亚,郭闯强,裴旭东,等. 太赫兹段慢波结构的微细加工技术研究新进展[J]. 机械工程学报,2019,55(7):187-198. WU Chunya,GUO Chuangqiang,PEI Xudong,et al. New progress of microfabrication techniques for slow wave structure at THz frequencies[J]. Journal of Mechanical Engineering,2019,55(7):187-198. [8] 戴一帆,彭小强,薛帅,等. 高性能光学制造[J]. 机械工程学报,2023,59(21):1-14. DAI Yifan,PENG Xiaoqiang,XUE Shuai,et al. High-performance optical manufacturing[J]. Journal of Mechanical Engineering,2023,59(21):1-14. [9] 王振龙. 微细加工技术[M]. 北京:国防工业出版社,2005. WANG Zhenlong. Micro manufacturing technology[M]. Beijing:National Defense Industry Press,2005. [10] 郭东明. 高性能制造[J]. 机械工程学报,2022,58(21):225-242. GUO Dongming. High performance manufacturing[J]. Journal of Mechanical Engineering,2022,58(21):225-242. [11] BISSACCO G,HANSEN H N,DE CHIFFRE L. Micromilling of hardened tool steel for mould making applications[J]. Journal of Materials Processing Technology,2005,167(2-3):201-207. [12] 李伟,周志雄,尹韶辉,等. 微细磨削技术及微磨床设备研究现状分析与探讨[J]. 机械工程学报,2016,52(17):10-19. LI Wei,ZHOU Zhixiong,YIN Shaohui,et al. Research status analysis and review of micro-grinding technology and micro-grinding machines[J]. Journal of Mechanical Engineering,2016,52(17):10-19. [13] ADAIR K,KAPOOR S G,DEVOR R E. Development of a unique topology for a hard-turning micro-scale machine tool[J]. Journal of Manufacturing Processes,2011,13(2):75-84. [14] ZHANG S J,ZHOU Y P,ZHANG H J,et al. Advances in ultra-precision machining of micro-structured functional surfaces and their typical applications[J]. International Journal of Machine Tools & Manufacture,2019,142:16-41. [15] LI W,REN Y H,LI C F,et al. Investigation of machining and wear performance of various diamond micro-grinding tools[J]. The International Journal of Advanced Manufacturing Technology,2019,106(3-4):921-935. [16] 温雪龙,巩亚东,程军,等. 钠钙玻璃微磨削表面粗糙度试验研究[J]. 中国机械工程,2014,25(3):290-294. WEN Xuelong,GONG Yadong,CHENG Jun,et al. Experimental study on surface roughness in micro-grinding of soda-lime glass[J]. China Mechanical Engineering,2014,25(3):290-294. [17] AN Q L,CHEN J,MING W W,et al. Machining of SiC ceramic matrix composites:A review[J]. Chinese Journal of Aeronautics,2021,34(4):540-567. [18] AURICH J C,CARRELLA M,WALK M. Micro grinding with ultra small micro pencil grinding tools using an integrated machine tool[J]. CIRP Annals - Manufacturing Technology,2015,64(1):325-328. [19] REN Y H,LI C F,LI W,et al. Study on micro-grinding quality in micro-grinding tool for single crystal silicon[J]. Journal of Manufacturing Processes,2019,42:246-256. [20] SETTI D,ARRABIYEH P A,KIRSCH B,et al. Analytical and experimental investigations on the mechanisms of surface generation in micro grinding[J]. International Journal of Machine Tools & Manufacture,2020,149:103489. [21] PERVEEN A,JAHAN M P,RAHMAN M,et al. A study on microgrinding of brittle and difficult-to-cut glasses using on-machine fabricated poly crystalline diamond (PCD) tool[J]. Journal of Materials Processing Technology,2012,212(3):580-593. [22] WALK M,CARRELLA M,ENGMANN J,et al. Micro pencil grinding tools:Manufacturing,application,and results[C]// proceedings of the 11th International Conference of the European Society for Precision Engineering & Nanotechnology,Lake Como,Italy,2011. [23] SETTI D,KIRSCH B,ARRABIYEH P,et al. Visualization of geometrical deviations in micro grinding by kinematic simulations[C]// proceedings of the 13th International Manufacturing Science and Engineering Conference,September 24,2018,College Station,U.S. Texas:ASME,2018. [24] ZHOU Y G,MA L J,GONG Y D,et al. Study on force and temperature characteristics of micro-grinding nickel-based single-crystal superalloy[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2019,41(4):193. [25] ZHOU Y G,GONG Y D,CAI M,et al. Study on surface quality and subsurface recrystallization of nickel-based single-crystal superalloy in micro-grinding[J]. International Journal of Advanced Manufacturing Technology,2017,90(5-8):1749-1768. [26] ZHOU Y G,MA L J,GONG Y D,et al. Study on the mechanism of chip forming and the microhardness of micro-grinding nickel-based single-crystal superalloy[J]. The International Journal of Advanced Manufacturing Technology,2019,103(1-4):281-295. [27] SARKAR B R,DOLOI B,BHATTACHARYYA B. Investigation on electrochemical discharge micro-machining of silicon carbide[J]. International Journal of Materials Forming and Machining Processes,2017,4(2):29-44. [28] ZHANG Y,XU Z,WANG Y,et al. Surface-improvement mechanism of hybrid electrochemical discharge process using variable-amplitude pulses[J]. Chinese Journal of Aeronautics,2020,33(10):2782-2793. [29] SAHU A K,MALHOTRA J,JHA S. Laser-based hybrid micromachining processes:A review[J]. Optics & Laser Technology,2022,146:107554. [30] XIAO G J,WANG J Z,ZHU S W,et al. A review of research on material removal mechanisms for laser-assisted machining of difficult-to-machine materials[J]. Surface Science and Technology,2023,1:8. [31] LIU X,WANG B,LI Y,et al. Improving machinability of single-crystal silicon by cold plasma jet[J]. Journal of Manufacturing Processes,2023,99:581-591. [32] LYU P,LAI M,LIU Z,et al. Damage-free finishing of Lu2O3 by combining plasma-assisted etching and low-pressure polishing[J]. CIRP Annals - Manufacturing Technology,2022,71(1):169-172. [33] 朱荻,房晓龙,王登勇,等. 电化学制造新进展[J]. 机械工程学报,2023,59(19):330-347. ZHU Di,FANG Xiaolong,WANG Dengyong,et al. New developments in electrochemical manufacturing[J]. Journal of Mechanical Engineering,2023,59(19):330-347. [34] ZHAO G L,ZHAO B,DING W F,et al. Nontraditional energy-assisted mechanical machining of difficult-to-cut materials and components in aerospace community:A comparative analysis[J]. International Journal of Extreme Manufacturing,2024,6(2):022007. [35] ZHU D,ZENG Y B,XU Z Y,et al. Precision machining of small holes by the hybrid process of electrochemical removal and grinding[J]. CIRP Annals - Manufacturing Technology,2011,60(1):247-250. [36] KWON W,KIM T,SONG K Y. Experimental investigation on CO2 laser-assisted micro-grinding characteristics of Al2O3[J]. International Journal of Precision Engineering and Manufacturing,2020,22(1):51-62. [37] BEIRING P,YAN J. Ultrasonic vibration-assisted microgrinding of glassy carbon[J]. Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2019,233(12):4165-4175. [38] 郭东明,孙玉文,贾振元. 高性能精密制造方法及其研究进展[J]. 机械工程学报,2014,50(11):119-134. GUO Dongming,SUN Yuwen,JIA Zhenyuan. Methods and research progress of high performance manufacturing[J]. Journal of Mechanical Engineering,2014,50(11):119-134. [39] LI W,CHEN Q D,REN Y H,et al. Hybrid micro-grinding process for manufacturing meso/micro-structures on monocrystalline silicon[J]. Materials and Manufacturing Processes,2020,36(1):17-26. [40] WEN X L,LI J Y,GONG Y D. Simulation and experimental research on grinding force and grinding surface quality of TiC-coated micro-grinding tools[J]. The International Journal of Advanced Manufacturing Technology,2023,128(3-4):1337-1351. [41] JIN L Y,GONG Y D,HU Y T,et al. Comparison and evaluation of microchannel array machining with structured cutter[J]. Materials and Manufacturing Processes,2022,38(3):314-321. [42] GONG Y D,LIU Y,SUN Y,et al. Experimental and mutational investigations into grinding characteristics of Zr-based bulk metallic glass (BMG) using microgrinding[J]. The International Journal of Advanced Manufacturing Technology,2018,97(9-12):3431-3451. [43] HUANG S,ZHANG Y Y,WANG Z M,et al. A one-step method to fabricate bio-friendly patterned superhydrophobic surface by atmospheric pressure cold plasma[J]. Journal of Advanced Manufacturing Science and Technology,2021,1(1):2020005. [44] 郭东明. 高性能精密制造[J]. 中国机械工程,2018,29(7):757-765. GUO Dongming. High-performance precision manufacturing[J]. China Mechanical Engineering,2018,29(7):757-765. [45] DING X R,TANG Y,LI Z T,et al. Multichip LED modules with v-groove surfaces for light extraction efficiency enhancements considering roughness scattering[J]. IEEE Transactions on Electron Devices,2017,64(1):182-188. [46] GAO T Y,ZHANG H,XU J,et al. Effects of cylindrical pit array on tribological property of piston-cylinder sleeve friction pair in a BW-250 slime pump[J]. Tribology International,2020,151:106505. [47] 朱荻,房晓龙,刘嘉,等. 难加工材料微槽结构离散电化学制造[J]. 中国科学基金,2021,35(S1):175-184. ZHU Di,FANG Xiaolong,LIU Jia,et al. Discrete electrochemical machining of micro grooves in difficult-to-cut materials[J] Bulletin of National Natural Science Foundation of China,2021,35(S1):175-184. [48] BANG Y B,LEE K M,OH S. 5-axis micro milling machine for machining micro parts[J]. The International Journal of Advanced Manufacturing Technology,2004,25(9-10):888-894. [49] CHEN S T,TSAI M Y,LAI Y C,et al. Development of a micro diamond grinding tool by compound process[J]. Journal of Materials Processing Technology,2009,209(10):4698-4703. [50] GäBLER J,PLEGER S. Precision and micro CVD diamond-coated grinding tools[J]. International Journal of Machine Tools & Manufacture,2010,50(4):420-424. [51] SHE C X,LI K X,REN Y H,et al. Tool wear prediction method based on bidirectional long short-term memory neural network of single crystal silicon micro-grinding[J]. The International Journal of Advanced Manufacturing Technology,2023,131(5-6):2641-2651. [52] CHAVOSHI S Z,LUO X C. Hybrid micro-machining processes:A review[J]. Precision Engineering,2015,41:1-23. [53] 许剑锋,黄凯,郑正鼎,等. 难加工材料场辅助超精密加工研究[J]. 中国科学:技术科学,2022,52(6):829-853. XU Jingfeng,HUANG Kai,ZHENG Zhengding,et al. Review of field-assisted ultraprecision machining difficult-to-machine materials[J]. Scientia Sinica Technologica,2022,52(6):829-853. [54] ZHANG L,KONG L L,LEI W N,et al. Review of electrochemical discharge machining technology for insulating hard and brittle materials[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2024,46(3):143. [55] BASSU M,SURDO S,STRAMBINI L M,et al. Electrochemical micromachining as an enabling technology for advanced silicon microstructuring[J]. Advanced Functional Materials,2012,22(6):1222-1228. [56] 朱荻,王明环,明平美,等. 微细电化学加工技术[J]. 纳米技术与精密工程,2005,3(2):151-155. ZHU Di,WANG Minghuan,MING Pingmei,et al. Micro electrochemical fabrication[J]. Nanotechnology and Precision Engineering,2005,3(2):151-155. [57] DEVANATHAN C,GIRI R,DINESH C,et al. Influence of process parameters on MRR and taper cut in micro drilling of SS304 using electrochemical machining[J]. Materials Today:Proceedings,2021,46:3526-3532. [58] GE Y C,ZHU Z W,ZHU D,et al. Electrochemical machining of a convex strips structure on a revolving part by using site directed power interruption[J]. Chinese Journal of Aeronautics,2018,31(10):2049-2056. [59] WANG X,ZIMMER K,EHRHARDT M,et al. One-step in-situ low damage etching of SiC/SiC composites by high-temperature chemical-assisted laser processing[J]. Ceramics International,2022,48(23):34472-34482. [60] ZHANG B,LU S X,RABIEY M,et al. Grinding of composite materials[J]. CIRP Annals - Manufacturing Technology,2023,72(2):645-671. [61] ZHENG B X,JIANG G D,WANG W J,et al. Surface ablation and threshold determination of AlCu4SiMg aluminum alloy in picosecond pulsed laser micromachining[J]. Optics & Laser Technology,2017,94:267-278. [62] REHMAN Z U,JANULEWICZ K A. Structural transformations in femtosecond laser-processed n-type 4H-SiC[J]. Applied Surface Science,2016,385:1-8. [63] SUN Z M,GUPTA M C. Laser processing of silicon for photovoltaics and structural phase transformation[J]. Applied Surface Science,2018,456:342-350. [64] TANGWARODOMNUKUN V,MEKLOY S. Temperature field modeling and cut formation in laser micromachining of silicon in ice layer[J]. Journal of Materials Processing Technology,2019,271:202-213. [65] WLODARCZYK K L,CARTER R M,JAHANBAKHSH A,et al. Rapid laser manufacturing of microfluidic devices from glass substrates[J]. Micromachines,2018,9(8):409. [66] 丁文锋,曹洋,赵彪,等. 超声振动辅助磨削加工技术及装备研究的现状与展望[J]. 机械工程学报,2022,58(9):244-269. DING Wenfeng,CAO Yang,ZHAO Biao,et al. Research status and future prospects of ultrasonic vibration-assisted grinding technology and equipment[J]. Journal of Mechanical Engineering,2022,58(9):244-269. [67] MA G F,KANG R K,DONG Z G,et al. Hole quality in longitudinal–torsional coupled ultrasonic vibration assisted drilling of carbon fiber reinforced plastics[J]. Frontiers of Mechanical Engineering,2020,15(4):538-546. [68] SHARD A,AGARWAL R,GUPTA V,et al. Influence of ultrasonic vibrations during drilling of carbon-fiber- reinforced polyetherimide composites[J]. Applied Acoustics,2023,202:109163. [69] XIA K B,REN N F,WANG H X,et al. Analysis for effects of ultrasonic power on ultrasonic vibration-assisted single-pulse laser drilling[J]. Optics & Laser Technology,2018,110:279-287. [70] 王瑞雪,叶巴丁,孔祥号,等. 低温等离子体表面强化技术研究进展[J]. 机械工程学报,2021,57(12):192-207. WANG Ruixue,YE Bading,KONG Xianghao,et al. Research progress of low temperature plasma surface strengthening technology[J]. Journal of Mechanical Engineering,2021,57(12):192-207. [71] LIU J Y,LI Y H,CHEN Y,et al. A review of low-temperature plasma-assisted machining:From mechanism to application[J]. Frontiers of Mechanical Engineering,2023,18(1):18. [72] LIU J Y,CHEN Y,ZHANG J C,et al. Atmospheric pressure plasma jet and minimum quantity lubrication assisted micro-grinding of quenched GCr15[J]. The International Journal of Advanced Manufacturing Technology,2019,106(1-2):191-199. [73] DOI T K,SANO Y,KUROWAKA S,et al. Novel chemical mechanical polishing/plasma-chemical vaporization machining (CMP/P-CVM) combined processing of hard-to-process crystals based on innovative concepts[J]. Sensors and Materials,2014,26(6):403-415. [74] LI S S,WANG L J,LI G Z,et al. Small hole drilling of Ti-6Al-4V using ultrasonic-assisted plasma electric oxidation grinding[J]. Precision Engineering,2021,67:189-198. [75] LU J B,CHEN R,LIANG H Z,et al. The influence of concentration of hydroxyl radical on the chemical mechanical polishing of SiC wafer based on the Fenton reaction[J]. Precision Engineering,2018,52:221-226. [76] 潘继生,邓家云,张棋翔,等. 羟基自由基高级氧化技术应用进展综述[J]. 广东工业大学学报,2019,36(2):70-85. PAN Jisheng,DENG Jiayun,ZHANG Qixiang,et al. A Review of the application of advanced oxidation technology of hydroxyl radicals[J]. Journal of Guangdong University of Technology,2019,36(2):70-85. [77] REN Y H,LI K X,LI W,et al. Research on a UV-assisted chemical modification strategy for monocrystalline silicon[J]. Mechanical Sciences,2021,12(1):133-141. [78] 吴思怡,王锋,康小明. 光催化辅助射流电解加工SiCp/Al实验研究[J]. 电加工与模具,2023(4):40-45. WU Siyi, WANG Feng, KANG Xiaoming. Experimental study on photocatalytic assisted jet electrochemical machining of SiCp/Al[J]. Electrical Machining and Mold, 2023(4): 40-45. [79] 庄存波,刘检华,张雷. 工业5.0的内涵、体系架构和使能技术[J]. 机械工程学报,2022,58(18):75-87. ZHUANG Cunbo,LIU Jianhua,ZHANG Lei. Connotation,architecture and enabling technology of Industrial 5.0[J]. Journal of Mechanical Engineering,2022,58(18):75-87. [80] 田龙,黄传真,刘盾,等. 激光辅助水射流微铣削单晶β-Ga2O3衬底的实验研究[J]. 中国机械工程,2023,34(13):1559-1567. TIAN Long,HUANG Chuanzhen,LIU Dun,et al. Experimental study of laser assisted water jet micromilling of single crystal β-Ga2O3 substrates[J]. China Mechanical Engineering,2023,34(13):1559-1567. [81] REN N F,XIA K B,YANG H Y,et al. Water-assisted femtosecond laser drilling of alumina ceramics[J]. Ceramics International,2021,47(8):11465-11473. [82] 孙冬,王军华,韩福柱. 单晶硅水导/水辅助激光切割加工对比研究[J]. 应用激光,2016,36(6):723-727. SUN Dong,WANG Junhua,HAN Fuzhu. Contrastive study of water jet guided laser and water jet assisted laser cutting of monocrystalline silicon[J]. Applied Laser,2016,36(6):723-727. [83] CAO X W,CHEN Q D,FAN H,et al. Liquid-assisted femtosecond laser precision-machining of silica[J]. Nanomaterials,2018,8(5):287. [84] LEE P H,KIM J W,LEE S W. Experimental characterization on eco-friendly micro-grinding process of titanium alloy using air flow assisted electrospray lubrication with nanofluid[J]. Journal of Cleaner Production,2018,201:452-462. [85] BRINKSMEIER E,MUTLUGÜNES Y,KLOCKE F,et al. Ultra-precision grinding[J]. CIRP Annals - Manufacturing Technology,2010,59(2):652-671. [86] 周志雄,李伟,宋铁军,等. 微细切削加工用微主轴的性能要求及其研究现状[J]. 机械工程学报,2011,47(19):149-157. ZHOU Zhixiong,LI Wei,SONG Tiejun,et al. Performance requirements and research state of micro-spindles for micro-cutting[J]. Journal of Mechanical Engineering,2011,47(19):149-157. [87] CAO X D,KIM B H,CHU C N. Hybrid micromachining of glass using ECDM and micro grinding[J]. International Journal of Precision Engineering and Manufacturing,2013,14(1):5-10. [88] KOZAK J,SKRABALAK G. Investigations on abrasive electrochemical grinding process (AECG)[C]// proceedings of the Transactions on Engineering Technologies,Dordrecht,Springer Netherlands,2015. [89] HORNG J H,LIN Y C,YU C C,et al. Hybrid electrochemical micro-machining method of tungsten microprobe in batch production[J]. Journal of the Chinese Society of Mechanical Engineers,2017,38(5):435-443. [90] HUNG J C,SU T K. Machining characteristics of diamond grit-coated tools in grinding-aided ECDM[J]. Materials and Manufacturing Processes,2023,38(12):1581-1599. [91] TIAN Y G,SHIN Y C. Thermal modeling for laser-assisted machining of silicon nitride ceramics with complex features[J]. Journal of manufacturing Science and Engineering,2006,128(2):425-535. [92] KUMAR M,MELKOTE S,LAHOTI G. Laser-assisted microgrinding of ceramics[J]. CIRP Annals - Manufacturing Technology,2011,60(1):367-370. [93] FORTUNATO A,GUERRINI G,MELKOTE S N,et al. A laser assisted hybrid process chain for high removal rate machining of sintered silicon nitride[J]. CIRP Annals - Manufacturing Technology,2015,64(1):189-192. [94] WANG Z C,XU J K,YU H D,et al. Process characteristics of laser-assisted micro machining of SiCp/2024Al composites[J]. The International Journal of Advanced Manufacturing Technology,2017,94(9-12):3679-3690. [95] HU M F,XIE J,SU H H,et al. Study on laser-assisted dry micro-ground surface of difficult-to-cut materials[J]. The International Journal of Advanced Manufacturing Technology,2017,94(5-8):2919-2928. [96] LI Z P,ZHANG F H,LUO X C,et al. Material removal mechanism of laser-assisted grinding of RB-SiC ceramics and process optimization[J]. Journal of the European Ceramic Society,2018,39(4):705-717. [97] KADIVAR M,SHAMRAY S,SOLTANI B,et al. Laser-assisted micro-grinding of Si3N4[J]. Precision Engineering,2019,60:394-404. [98] SAHU A K,JHA S. Comparative investigation of laser assisted hybrid microgrinding methods[J]. Materials Letters,2023,330:133239. [99] ONIKURA H,INOUE R,OKUNO K,et al. Fabrication of electroplated micro grinding wheels and manufacturing of microstructures with ultrasonic vibration[J]. Key Engineering Materials,2003,238-239:9-14. [100] SUZUKI H,MORIWAKI T,YAMAMOTO Y,et al. Precision cutting of aspherical ceramic molds with micro PCD milling tool[J]. CIRP Annals - Manufacturing Technology,2007,56(1):131-134. [101] AURICH J C,ENGMANN J,SCHUELER G M,et al. Micro grinding tool for manufacture of complex structures in brittle materials[J]. CIRP Annals - Manufacturing Technology,2009,58(1):311-314. [102] ISHIMATSU J,IWAITA A,ISOBE H. Grinding a hard-to-grind materials with ultrasonic-assisted fluid[J]. International Journal of Automation Technology,2014,8(3):478-483. [103] EGASHIRA K,KUMAGAI R,OKINA R,et al. Drilling of microholes down to 10μm in diameter using ultrasonic grinding[J]. Precision Engineering,2014,38(3):605-610. [104] GUO B,ZHAO Q L. Ultrasonic vibration assisted grinding of hard and brittle linear micro-structured surfaces[J]. Precision Engineering,2017,48:98-106. [105] DONG G J,ZHANG L M. Investigation on grinding force and machining quality during rotary ultrasonic grinding deep-small hole of fluorophlogopite ceramics[J]. The International Journal of Advanced Manufacturing Technology,2019,104(5-8):2815-2825. [106] FENG H R,XIANG D H,WU B F,et al. Ultrasonic vibration-assisted grinding of blind holes and internal threads in cemented carbides[J]. The International Journal of Advanced Manufacturing Technology,2019,104(1-4):1357-1367. [107] YI S C,QIAO G C,ZHENG W,et al. Effect of crack propagation on surface formation mechanism and surface morphology evaluation of longitudinal–torsional composite ultrasonic mill grinding of Si3N4[J]. The International Journal of Advanced Manufacturing Technology,2023,125(11-12):5101-5117. [108] LEE P H,LEE S W. Experimental characterization of micro-grinding process using compressed chilly air[J]. International Journal of Machine Tools & Manufacture,2011,51(3):201-209. [109] LI K M,LIN C P. Study on minimum quantity lubrication in micro-grinding[J]. The International Journal of Advanced Manufacturing Technology,2012,62(1-4):99-105. [110] ZHANG W T,WANG Y R,ZHANG D H,et al. A one-step approach to the large-scale synthesis of functionalized MoS2 nanosheets by ionic liquid assisted grinding[J]. Nanoscale,2015,7(22):10210-10217. [111] ARRABIYEH P A,HEINTZ M,KIEREN-EHSES S,et al. Submerged micro grinding:A metalworking fluid application study[J]. The International Journal of Advanced Manufacturing Technology,2020,107(9-10):3807-3815. [112] YANG M,LI C H,LUO L,et al. Predictive model of convective heat transfer coefficient in bone micro-grinding using nanofluid aerosol cooling[J]. International Communications in Heat and Mass Transfer,2021,125:105317. [113] CUI X,LI C H,DING W F,et al. Minimum quantity lubrication machining of aeronautical materials using carbon group nanolubricant:From mechanisms to application[J]. Chinese Journal of Aeronautics,2022,35(11):85-112. [114] 蒋香云. 化学机械微细磨削化学改性液理化性能研究[D]. 长沙:湖南大学,2018. JIANG Xiangyun. Research on physical and chemical properties of chemical modified solution for chemical mechanical micro-grinding[D]. Changsha:Hunan University,2018. [115] 李伟,任莹晖,周志雄. 一种化学机械-机械化学协同微细磨削加工方法与复合磨粒型微小磨具. 中国:CN109732471B[P]. 2020-07-28. LI Wei,Ren Yinghui,ZHOU Zhixiong,et al. A mechanical-mechanochemical synergistic micro-griding technology and compounded abrasive micro-grinding tools:China,CN109732471B[P]. 2020-07-28. [116] 任莹晖,李伟,李可欣,等. 一种光催化高能场辅助化学机械复合微细磨削方法:中国,CN110842761B[P]. 2021-07-09. REN Yinghui,LI Wei,LI Kexin,et al. A hybrid ultraviolet laser catalyzed and high energy field assisted chemo-mechanical micro-grinding method:China,CN110842761B[P]. 2021-07-09. [117] LIU M Z,LI C H,ZHANG Y B,et al. Cryogenic minimum quantity lubrication machining:From mechanism to application[J]. Frontiers of Mechanical Engineering,2021,16(4):649-697. [118] XU W H,LI C H,ZHANG Y B,et al. Electrostatic atomization minimum quantity lubrication machining:From mechanism to application[J]. International Journal of Extreme Manufacturing,2022,4(4):042003. [119] REN Y H,LI K X,LI W,et al. A hybrid chemical modification strategy for monocrystalline silicon micro-grinding:Experimental investigation and synergistic mechanism[J]. Chinese Journal of Aeronautics,2023,36(7):147-159. [120] LI W,XIE S Q,DENG Z Y,et al. Novel designed mechanical-mechanochemical synergistic micro- grinding technology and compounded abrasive micro- grinding tools[J]. Journal of Materials Research and Technology,2023,25:3365-3381. [121] WANG F,ZHOU J,WU S Y,et al. Study on material removal mechanism of photocatalytic-assisted electrochemical milling-grinding SiCp/Al[J]. The International Journal of Advanced Manufacturing Technology,2023,124(3-4):817-832. [122] WU H Q,DUAN W H,SUN L H,et al. Effect of ultrasonic vibration on the machining performance and mechanism of hybrid ultrasonic vibration/plasma oxidation assisted grinding[J]. Journal of Manufacturing Processes,2023,94:466-478. [123] RAJURKAR K P,ZHU D,MCGEOUGH J A,et al. New developments in electro-chemical machining[J]. CIRP Annals - Manufacturing Technology,1999,48(2):567-579. [124] LADEESH V G,MANU R. Grinding aided electrochemical discharge drilling (G-ECDD):A theoretical analysis and mathematical modelling of material removal rate[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2021,43(9):422. [125] ZHANG S S,ZHOU J P,HU G Y,et al. Process characteristics of electrochemical discharge machining and hybrid methods:A review[J]. The International Journal of Advanced Manufacturing Technology,2023,129(5-6):1933-1963. [126] FERBER M K. International energy agency:Implementing agreement for a programme of research and development on high temperature materials for automotive engines[M]. U.S. Department of Energy:Springer,2000. [127] MASUZAWA T,FUJINO M,KOBAYASHI K,et al. Wire electro-discharge grinding for micro-machining[J]. CIRP Annals - Manufacturing Technology,1985,34(1):431-434. [128] CHANG C W,KUO C P. An investigation of laser-assisted machining of Al2O3 ceramics planing[J]. International Journal of Machine Tools & Manufacture,2007,47(3-4):452-461. [129] SUN S,BRANDT M,DARGUSCH M S. Thermally enhanced machining of hard-to-machine materials—A review[J]. International Journal of Machine Tools & Manufacture,2010,50(8):663-680. [130] XU W X,ZHANG L C. Ultrasonic vibration-assisted machining:Principle,design and application[J]. Advances in Manufacturing,2015,3(3):173-192. [131] FOY K,WEI Z,MATSUMURA T,et al. Effect of tilt angle on cutting regime transition in glass micromilling[J]. International Journal of Machine Tools & Manufacture,2009,49(3-4):315-324. [132] MATSUMURA T,ONO T. Cutting process of glass with inclined ball end mill[J]. Journal of Materials Processing Technology,2008,200(1-3):356-63. [133] LIANG Z Q,MA Y,NIE Q Q,et al. Ultrasonic cavitation and vibration hybrid-assisted micro-drilling of stainless steel[J]. The International Journal of Advanced Manufacturing Technology,2019,104(5-8):3073-3082. [134] PLESSET M S,CHAPMAN R B. Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary[J]. Journal of Fluid Mechanics,1971,47(2):283-290. [135] HAMADE R F,ISMAIL F. A case for aggressive drilling of aluminum[J]. Journal of Materials Processing Technology,2005,166(1):86-97. [136] NI H,GONG H,DONG Y H,et al. A comparative investigation on hybrid EDM for drilling small deep holes[J]. The International Journal of Advanced Manufacturing Technology,2017,95(1-4):1465-1472. [137] YU Z Y,MA C S,AN C M,et al. Prediction of tool wear in micro USM[J]. CIRP Annals - Manufacturing Technology,2012,61(1):227-230. [138] 吴勇波,郭子睿. 多场辅助精密机械加工技术现状与展望[J]. 电加工与模具,2022(5):1-16. WU Yongbo,GUO Zirui. The development of multi-field assisted mechanical machining technologies[J]. Electromachining & Mould,2022(5):1-16. [139] REDDY P P,GHOSH A. Some critical issues in cryo-grinding by a vitrified bonded alumina wheel using liquid nitrogen jet[J]. Journal of Materials Processing Technology,2016,229:329-337. [140] 陈泊希,李育恒,周瑜阳,等. 大气压冷等离子体射流辅助微铣削纯钛试验研究[J]. 电加工与模具,2022(1):61-66. CHEN Boxi,LI Yuheng,ZHOU Yuyang,et al. Experimental research on atmospheric pressure cold plasma jet assisted micro-milling pure titanium[J]. Electromachining & Mould,2022(1):61-66. [141] 刘明政,李长河,曹华军,等. 低温微量润滑加工技术研究进展与应用[J]. 中国机械工程,2022,33(5):529-550. LIU Mingzheng,LI Changhe,CAO Huajun,et al. Research progresses and application of CMQL machining technology[J]. China Mechanical Engineering,2022,33(5):529-550. [142] 韩旭. 单晶硅多能场复合化学改性策略研究[D]. 长沙:湖南大学,2019. HAN Xu. Research on multi-energy field compound chemical modification strategy of single crystal silicon[D]. Changsha:Hunan University,2019. [143] 刘晓曼. 光-热耦合单晶硅化学改性及复合微细磨削质量研究[D]. 长沙:湖南大学,2020. LIU Xiaoman. Research on chemical modification strategy of light-thermal coupling monocrystalline and composite micro-grinding quality[D]. Changsha:Hunan University,2020. [144] 李可欣. 单晶硅光催化高能场辅助化学改性协同机理与工艺试验研究[D]. 长沙:湖南大学,2022. LI Kexin. Synergistic mechanism and experimental investigations on a hybrid ultraviolet light catalyzed and infrared laser assisted chemical modification for monocrystalline silicon [D]. Changsha:Hunan University,2022. [145] LI G Z,XIAO C,ZHANG S B,et al. An experimental investigation of silicon wafer thinning by sequentially using constant-pressure diamond grinding and fixed-abrasive chemical mechanical polishing[J]. Journal of Materials Processing Technology,2022,301:117453. [146] LI S,WU Y,YAMAMURA K,et al. Improving the grindability of titanium alloy Ti-6Al-4V with the assistance of ultrasonic vibration and plasma electrolytic oxidation[J]. CIRP Annals - Manufacturing Technology,2017,66(1):345-348. |
[1] | 孟庆宇, 孟变变, 郭兵, 郭振飞, 吴贵成, 李川渠, 赵清亮. 基于微结构化工具的大长径比微齿内螺纹精密磨削技术研究[J]. 机械工程学报, 2025, 61(5): 330-342. |
[2] | 唐恒, 谢岩松, 孙亚隆, 伍春霞, 汤勇. 液体定向自驱动输运结构设计与制造研究进展[J]. 机械工程学报, 2025, 61(3): 376-391. |
[3] | 温秋玲, 杨野, 黄辉, 黄国钦, 胡中伟, 陈金鸿, 汪晖, 吴贤. 激光复合加工硬脆性材料研究进展综述[J]. 机械工程学报, 2024, 60(9): 168-188. |
[4] | 魏鑫鹏, 吴雪莲, 吴宬哲, 孙万杰, 丁健翔, 柏小平, 柳东明, 张世宏, 任万滨, 孙正明. 电弧侵蚀过程Ag/Ti2SnC复合电触头材料纳米力学退化行为及其机理[J]. 机械工程学报, 2024, 60(24): 163-176. |
[5] | 孟磊, 周平, 闫英, 郭东明. 基于不确定性分析的半球陀螺谐振子高性能制造[J]. 机械工程学报, 2024, 60(21): 254-262. |
[6] | 雷雨, 许志龙, 徐西鹏, 高贾顺, 郭必成. 微切削结构毛刺研究综述[J]. 机械工程学报, 2024, 60(21): 336-348. |
[7] | 黄家乐, 李萍, 邓亮明, 陈志鹏, 周伟, 向建化. 基于不对称流动阻力的热二极管设计及传热性能研究[J]. 机械工程学报, 2024, 60(18): 208-217. |
[8] | 田波, 娄军强, 沈家旭, 柳丽, 陈特欢, 李国平, 魏燕定. 可用于微创手术的毫米级微小并联机器人的设计、制造及实现[J]. 机械工程学报, 2024, 60(17): 147-155. |
[9] | 彭子龙, 吴金印, 王萌杰, 李一楠, 兰红波. 电场驱动微尺度3D打印掩膜电解加工微结构[J]. 机械工程学报, 2024, 60(15): 420-436. |
[10] | 宋学官, 李昆鹏, 胡正国, 郭东明. 高性能制造:设计与制造的协同机制[J]. 机械工程学报, 2024, 60(1): 2-12. |
[11] | 马传震, 刘赫男, 陈明君, 程健, 田金川, 周子涵. 半球谐振子几何参量对其热弹性阻尼影响研究[J]. 机械工程学报, 2024, 60(1): 75-84. |
[12] | 许思远, 张卫东, 毛玉明, 牛斌. 数据驱动的指定变形非均质多胞结构优化设计[J]. 机械工程学报, 2024, 60(1): 85-95. |
[13] | 郭江, 张鹏飞, 杨哲, 赵勇, 李琳光, 景召, 张蒙, 庞桂兵. 匀光阵列微结构模具高性能非接触仿形抛光[J]. 机械工程学报, 2024, 60(1): 127-136. |
[14] | 王润琼, 宋清华, 彭业振, 刘战强. 基于特征自适应融合和集成学习的高性能铣削刀具状态监测[J]. 机械工程学报, 2024, 60(1): 149-158. |
[15] | 伍春霞, 唐恒, 张仕伟, 孙亚隆, 伍晓宇, 汤勇. 平板热管沟槽吸液芯结构刻蚀制造研究进展[J]. 机械工程学报, 2023, 59(24): 140-155. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||