机械工程学报 ›› 2025, Vol. 61 ›› Issue (13): 142-157.doi: 10.3901/JME.2025.13.142
• 特邀专栏:价值链协同赋能的复杂制造系统:趋势、技术与挑战 • 上一篇
吴少卿1, 李聪波1, 曹华军1, 王凌2, 李新宇3
收稿日期:
2024-06-30
修回日期:
2025-01-20
发布日期:
2025-08-09
作者简介:
吴少卿,男,1997年出生,博士研究生。主要研究方向为制造系统能效。E-mail:shaoqwu@163.com;李聪波(通信作者),男,1981年出生,博士,教授。主要研究方向为绿色制造、制造系统能效。E-mail:congboli@cqu.edu.cn
基金资助:
WU Shaoqing1, LI Congbo1, CAO Huajun1, WANG Ling2, LI Xinyu3
Received:
2024-06-30
Revised:
2025-01-20
Published:
2025-08-09
摘要: 制造业能源需求的不断上升导致了巨大的环境和经济问题,提升制造业的能量效率(又称能效)十分迫切。高能效制造研究已成为目前制造系统领域的热点问题,受到了广泛的关注。为了更详细的分析国内外趋势,基于作者们在高能效制造领域的研究基础,开展高能效制造理论与应用研究现状的综述性研究。首先,在制造系统能量效率内涵的基础上,从机床设备、加工工艺和制造车间三个层面构建了高能效制造研究的内容框架;然后,系统总结高能效制造内容框架下的国内外最新研究成果,并基于此归纳四点高能效制造的挑战难点;最后,提出高能效制造可参考的未来发展方向。
中图分类号:
吴少卿, 李聪波, 曹华军, 王凌, 李新宇. 高能效制造研究现状及展望[J]. 机械工程学报, 2025, 61(13): 142-157.
WU Shaoqing, LI Congbo, CAO Huajun, WANG Ling, LI Xinyu. The Status and Future Prospects of Research on Energy-efficient Manufacturing[J]. Journal of Mechanical Engineering, 2025, 61(13): 142-157.
[1] U.S. U.S. ENERGY INFORMATION ADMINISTRATION. International Energy Outlook[EB/OL]. [2025-02-20]. http://www.eia.gov/forecasts/ieo/pdf/0484. [2] 国家统计局. 中国统计年鉴2022[M]. 北京:中国统计出版社,2022. National Bureau of Statistics. China Statistical Yearbook 2022[M]. Beijing:China Statistics Press,2022. [3] EUROPEAN COMMISSION. The Green Deal Industrial Plan[EB/OL]. [2025-02-15]. https://commission.europa. eu/strategy-and-policy/priorities-2019-2024/european-green-deal/green-deal-industrial-plan. [4] AMERICAN TECHNOLOGY COUNCIL. National Strategy for Advanced Manufacturing[EB/OL]. [2025-02- 15]. https://www.whitehouse.gov/wp-content/uploads/2022/ 10/National-Strategy-for-Advanced-Manufacturing-10072022. [5] DEPARTMENT FOR BUSINESS,ENERGY& INDUSTRIAL STRATEGY. Net Zero Strategy:Build Back Greener[EB/OL]. [2024-09-15]. https://www.gov.uk/ government/publications/net-zero-strategy. [6] 高金吉. 中国高能耗机械装备运行现状及节能对策研究[M]. 北京:科学出版社,2013. GAO Jinji. The running status and energy saving countermeasures of high-energy-consumption mechanical equipment in China[M]. Beijing:Science Press,2013. [7] GUTOWSKI T,DAHMUS J,THIRIEZ A. Electrical energy requirements for manufacturing processes[C]. Proceedings of 13th CIRP International Conference on Life Cycle Engineering,Leuven,Belgium,2006. [8] International Organization for Standardization. ISO 14955-1:2017. Machine tools—Environmental evaluation of machine tools—Part 1: Design methodology for energy-efficient machine tools[S]. Geneva:ISO,2018. [9] DENKENA B,ABELE E,BRECHER C,et al. Energy efficient machine tools[J]. CIRP Annals-Manufacturing Technology,2020,69(2):646-667. [10] DMG MORI. Sustainability[EB/OL]. [2025-02-20]. https://cn.dmgmori.com/company/sustainability. [11] 刘飞,刘培基,李聪波,等. 制造系统能量效率研究的现状及难点问题[J]. 机械工程学报,2017,53(5):1-11. LIU Fei,LIU Peiji,LI Congbo,et al. The statue and difficult problems of research on energy efficiency of manufacturing systems[J]. Journal of Mechanical Engineering,2017,53(5):1-11. [12] KREITLEIN S,KUPFER I,MÜHLBAUER M,et al. The relative energy efficiency as standard for evaluating the energy efficiency of production processes based on the least energy demand[J]. Applied Mechanics and Materials,2015,805:11-18. [13] SCHUDELEIT T,ZÜST S,WEISS L,et al. The total energy efficiency index for machine tools[J]. Energy,2016,102:682-693. [14] 陈行政. 面向广义能效的机械加工系统工艺规划技术研究[D]. 重庆:重庆大学,2018. CHEN Xingzheng. Process planning technology and support system of mechanical machining for generalized energy efficiency[D]. Chongqing:Chongqing University,2018. [15] 李聪波,刘飞,曹华军. 机械加工制造系统能效理论与技术[M]. 北京:机械工业出版社,2022. LI Congbo,LIU Fei,CAO Huajun. Energy efficiency theory and technology of machining manufacturing system[M]. Beijing:China Machine Press,2022. [16] WANG J J,WANG L. A knowledge-based cooperative algorithm for energy-efficient scheduling of distributed flow-shop[J]. IEEE Transactions on Systems,Man,and Cybernetics:Systems,2018,50(5):1805-1819. [17] XIAO Q,LI C,TANG Y,et al. A knowledge-driven method of adaptively optimizing process parameters for energy efficient turning[J]. Energy,2019,166:142-156. [18] HACKSTEINER M,PEHERSTORFER H,BLEICHER F. Energy efficiency of state-of-the-art grinding processes[J]. Procedia Manufacturing,2018,21:717–724. [19] ALTINTAŞ R S,KAHYA M,ÜNVER H Ö. Modelling and optimization of energy consumption for feature based milling[J]. International Journal of Advanced Manufacturing Technology,2016,86(9-12):3345-3363. [20] YAN J,LI L. Multi-Objective optimization of milling parameters - the trade-offs between energy,production rate and cutting quality[J]. Journal of Cleaner Production,2013,52:462–471. [21] FONTES D,HOMAYOUNI S,GONÇALVES J. A hybrid particle swarm optimization and simulated annealing algorithm for the job shop scheduling problem with transport resources[J]. European Journal of Operational Research,2023,306(3):1140-1157. [22] GAO K,HUANG Y,SADOLLAH A,et al. A review of energy-efficient scheduling in intelligent production systems[J]. Complex & Intelligent Systems,2020,6:237-249. [23] TRIEBE M J,ZHAO F,SUTHERLAND J W. Modelling the effect of slide table mass on machine tool energy consumption:the role of lightweighting[J]. Journal of Manufacturing Systems,2022,62:668-680. [24] ALSWAT H M,MATIVENGA P T. Modelling the direct and embodied energy requirements of machining[J]. Journal of Cleaner Production,2022,366:132767. [25] WU C,LI W,WANG L,et al. Hybrid evolutionary scheduling for energy-efficient fog-enhanced internet of things[J]. IEEE Transactions on Cloud Computing,2018,9(2):641-653. [26] CHEN X,LI C,YANG Q,et al. Toward energy footprint reduction of a machining process[J]. IEEE Transactions on Automation Science and Engineering,2021,19(2):772-787. [27] LV J,TANG R,JIA S,et al. Experimental study on energy consumption of computer numerical control machine tools[J]. Journal of Cleaner Production,2016,112:3864-3874. [28] JUNGE F,HELFERT M,ABELE E,et al. Increase in energy efficiency of industrial production processes through thermal crosslinking of cutting-machine tools and cleaning machines by heat-pump technology[C]// 12th IEA Heat Pump Conference. 2017:1-10. [29] 刘飞,刘霜. 机床服役过程机电主传动系统的时段能量模型[J]. 机械工程学报,2012,48(21):132-140. LIU Fei,LIU Shuang. Multi-period energy model of electro-mechanical main driving system during the service process of machine tools[J]. Journal of Mechanical Engineering,2012,48(21):132-140. [30] 王秋莲,刘飞. 数控机床多源能量流的系统数学模型[J]. 机械工程学报,2013,49(7):66-74. WANG Qiulian,LIU Fei. Mathematical model of multi-source energy flows for CNC machine tools[J]. Journal of Mechanical Engineering,2013,49(7):66-74. [31] 施金良,刘飞,许弟建,等. 变频调速数控机床主传动系统的功率平衡方程[J]. 机械工程学报. 2010. 46(03):118-124. SHI Jinliang,LIU Fei,XU Dijian,et al. Power balance equation about the numerical control machine tool’s main driver system driven by variable voltage variable frequency[J]. Journal of Mechanical Engineering,2010,46(03):118-124. [32] PAWAR S S,BERA T C,SANGWAN K S. Modelling of spindle energy consumption in CNC milling[J]. Procedia CIRP,2022,105:192-197. [33] ZHANG Y,LI L,LIU W,et al. Dynamics analysis and energy consumption modelling based on bond graph:Taking the spindle system as an example[J]. Journal of Manufacturing Systems,2022,62:539-549. [34] ZHAO G,ZHAO Y,MENG F,et al. Prediction model of machine tool energy consumption in hard-to-process materials turning[J]. The International Journal of Advanced Manufacturing Technology,2020,106:4499-4508. [35] ZHOU L,LI J,LI F,et al. Energy consumption model and energy efficiency of machine tools:A comprehensive literature review[J]. Journal of Cleaner Production,2016,112:3721-3734. [36] YOON H S,SINGH E,MIN S. Empirical power consumption model for rotational axes in machine tools[J]. Journal of Cleaner Production,2018,196:370-381. [37] LI W,LI C,WANG N,et al. Energy saving design optimization of CNC machine tool feed system:A data-model hybrid driven approach[J]. IEEE Transactions on Automation Science and Engineering,2021,19(4):3809-3820. [38] TRIEBE M J,ZHAO F,SUTHERLAND J W. Achieving energy efficient machine tools by mass reduction through multi-objective optimization[J]. Procedia CIRP,2019,80:73–78. [39] SCHLEINKOFER U,LAUFER F,ZIMMERMANN M,et al. Resource-efficient manufacturing systems through lightweight construction by using a combined development approach[J]. Procedia CIRP,2018,72:856– 861. [40] ZHOU L,LI F,WANG Y,et al. A new empirical standby power and auxiliary power model of CNC machine tools[J]. The International Journal of Advanced Manufacturing Technology,2022,120(5):3995-4010. [41] CHEN X,LI C,TANG Y,et al. Energy efficient cutting parameter optimization[J]. Frontiers of Mechanical Engineering,2021,16(2):221–248. [42] JIA S,WANG S,ZHANG N,et al. Multi-objective parameter optimization of CNC plane milling for sustainable manufacturing[J]. Environmental Science and Pollution Research,2022:1-22. [43] XIAO Q,LI C,TANG Y,et al. Energy efficiency modeling for configuration-dependent machining via machine learning:A comparative study[J]. IEEE Transactions on Automation Science and Engineering,2020,18(2):717-730. [44] VIJAYARAGHAVAN A,DORNFELD D. Automated energy monitoring of machine tools[J]. CIRP Annals- Manufacturing Technology,2010,59(1):21-24. [45] MOHAMMADI A,ZÜST S,MAYR J,et al. A methodology for online visualization of the energy flow in a machine tool[J]. CIRP Journal of Manufacturing Science and Technology,2017,19:138-146. [46] XIE J,CAI W,DU Y,et al. Modelling approach for energy efficiency of machining system based on torque model and angular velocity[J]. Journal of Cleaner Production,2021,293:126249. [47] CAI Y,SHI X,SHAO H,et al. Energy efficiency state identification in milling processes based on information reasoning and Hidden Markov Model[J]. Journal of Cleaner Production,2018,193:397-413. [48] LI L,LI C,TANG Y,et al. An integrated solution to minimize the energy consumption of a resource- constrained machining system[J]. IEEE Transactions on Automation Science and Engineering,2019,17(3):1158-1175. [49] TUO J,LIU F,LIU P,et al. Energy efficiency evaluation for machining systems through virtual part[J]. Energy,2018,159:172-183. [50] KAUFELD M. Energieeffizienz-Eine Möglichkeit des Maschinenvergleichs[J]. Werkstatt und Betrieb,2011,144(12):60. [51] WANG Q,LIU F,LI C. An integrated method for assessing the energy efficiency of machining workshop[J]. Journal of Cleaner Production,2013,52:122-133. [52] CAO W,YAN C,WU D,et al. A novel multi-objective optimization approach of machining parameters with small sample problem in gear hobbing[J]. International Journal of Advanced Manufacturing Technology,2017,93(9-12):1-12. [53] TUO J,LIU F,LIU P. Key performance indicators for assessing inherent energy performance of machine tools in industries[J]. International Journal of Production Research,2019,57(6):1811-1824. [54] WEGENER K,WEISS L,GONTARZ A. Methods and tools for evaluation of energy efficiency in production[C]//International Chemnitz Manufacturing Colloquium ICMC. 2012:593-614. [55] Japanese Standards Association. JIS TS B 0024-1:2010. Machine tools—Test methods for electric power consumption—Part 1: Machining centres[S]. Tokyo:Japanese Standards Association,2010. [56] GIACONE E,MANCO S. Energy efficiency measurement in industrial processes[J]. Energy,2012,38:331-45 [57] CAMPATELLI G,SCIPPA A,LORENZINI L,et al. Optimal workpiece orientation to reduce the energy consumption of a milling process[J]. International Journal of Precision Engineering and Manufacturing-Green Technology,2015,2(1):5-13. [58] SHU L,DUFLOU J,HERRMANN C,et al. Design for reduced resource consumption during the use phase of products[J]. CIRP Annals-Manufacturing Technology,2017,66(2):635-658. [59] MA F,ZHANG H,GONG Q,et al. A novel energy efficiency grade evaluation approach for machining systems based on inherent energy efficiency[J]. International Journal of Production Research,2021,59(19):6022-6033. [60] LIU P,ZHANG Z,WANG X,et al. A generalized method for the inherent energy performance modeling of machine tools[J]. Journal of Manufacturing Systems,2021,61:406-422. [61] NEWMAN S T,NASSEHI A,IMANI-ASRAI R,et al. Energy efficient process planning for CNC machining[J]. CIRP Journal of Manufacturing Science and Technology,2012,5(2):127-136. [62] CUI X,GUO J. Identification of the optimum cutting parameters in intermittent hard turning with specific cutting energy,damage equivalent stress,and surface roughness considered[J]. The International Journal of Advanced Manufacturing Technology,2018,96:4281-4293. [63] EMAMI M,SADEGHI M H,SARHAN A A D,et al. Investigating the minimum quantity lubrication in grinding of Al2O3 engineering ceramic[J]. Journal of Cleaner Production,2014,66:632-643. [64] KUMAR R,BILGA P S,SINGH S. Multi objective optimization using different methods of assigning weights to energy consumption responses,surface roughness and material removal rate during rough turning operation[J]. Journal of Cleaner Production,2017,164:45-57. [65] XIAO Y,JIANG Z,GU Q,et al. A novel approach to CNC machining center processing parameters optimization considering energy-saving and low-cost[J]. Journal of Manufacturing Systems,2021,59:535-548. [66] LU F,ZHOU G,ZHANG C,et al. Energy-efficient multi-pass cutting parameters optimisation for aviation parts in flank milling with deep reinforcement learning[J]. Robotics and Computer-Integrated Manufacturing,2023,81:102488. [67] ZHAO X,LI C,TANG Y,et al. An integrated decision- making method of flexible process plan and cutting parameter considering dynamic machining resources[J]. IEEE Transactions on Automation Science and Engineering,2023,10(3):123-135. [68] LI W,LI B,HE S,et al. A novel milling parameter optimization method based on improved deep reinforcement learning considering machining cost[J]. Journal of Manufacturing Processes,2022,84:1362-1375. [69] LI L,LI C,TANG Y,et al. An integrated approach of process planning and cutting parameter optimization for energy-aware CNC machining[J]. Journal of Cleaner Production,2017,162:458-473. [70] LIU Q,LI X,GAO L. Mathematical modeling and a hybrid evolutionary algorithm for process planning[J]. Journal of Intelligent Manufacturing,2021,32:781-797. [71] HU L,PENG C,EVANS S,et al. Minimising the machining energy consumption of a machine tool by sequencing the features of a part[J]. Energy,2017,121:292-305. [72] FENG C,HUANG Y,WU Y,et al. Feature-based optimization method integrating sequencing and cutting parameters for minimizing energy consumption of CNC machine tools[J]. The International Journal of Advanced Manufacturing Technology,2022,121(1):503-515. [73] TIAN C,ZHOU G,LU F,et al. Cooperative optimization of cutting parameters,process routes,and scheduling considering carbon emissions with analytic target cascading[J]. The International Journal of Advanced Manufacturing Technology,2021,114:605-623. [74] TIAN C,ZHOU G,LU F,et al. An integrated multi- objective optimization approach to determine the optimal feature processing sequence and cutting parameters for carbon emissions savings of CNC machining[J]. International Journal of Computer Integrated Manufacturing,2020,33(6):609-625. [75] WEN X,LIAN X,QIAN Y,et al. Dynamic scheduling method for integrated process planning and scheduling problem with machine fault[J]. Robotics and Computer-Integrated Manufacturing,2022,77:102334. [76] GUPTA K,LAUBSCHER R F,PAULO DAVIM J,et al. Recent developments in sustainable manufacturing of gears:A review [J]. Journal of Cleaner Production,2016, 112:3320-3330. [77] ZHANG J,LI C,LI Y,et al. Energy consumption modeling and optimization of a hobbing machine tool considering multi-axis coupling[J]. IEEE Transactions on Automation Science and Engineering,2023,10(3):123-135. [78] SARANYA K,JEGARAJ J J R,KUMAR K R,et al. Artificial intelligence-based selection of optimal cutting tool and process parameters for effective turning and milling operations[J]. Journal of the Institution of Engineers,2018,99(4):381-392. [79] ZHOU M,ZHENG G,CHEN Z. An automated CNC programming approach to machining pocket with complex islands and boundaries by using multiple cutters in hybrid tool path patterns[J]. The International Journal of Advanced Manufacturing Technology,2016,83(1):407-420. [80] BAGABER S A,YUSOFF A R. Multi-objective optimization of cutting parameters to minimize power consumption in dry turning of stainless steel 316[J]. Journal of Cleaner Production,2017,157:30-46. [81] XIE N,ZHOU J,ZHENG B. Selection of optimum turning parameters based on cooperative optimization of minimum energy consumption and high surface quality[J]. Procedia CIRP,2018,72:1469-1474. [82] LV Y,LI C,TANG Y,et al. Toward energy-efficient rescheduling decision mechanisms for flexible job shop with dynamic events and alternative process plans[J]. IEEE Transactions on Automation Science and Engineering,2021,19(4):3259-3275. [83] BAYKASOĞLU A,MADENOĞLU F S. Greedy randomized adaptive search procedure for simultaneous scheduling of production and preventive maintenance activities in dynamic flexible job shops[J]. Soft Computing,2021,25(23):14893-14932. [84] GUI L,FU L,LI X,et al. Optimisation framework and method for solving the serial dual-shop collaborative scheduling problem[J]. International Journal of Production Research,2023,61(13):4341-4357. [85] SUN M,CAI Z,ZHANG H. A teaching-learning-based optimization with feedback for LR fuzzy flexible assembly job shop scheduling problem with batch splitting[J]. Expert Systems with Applications,2023,224:120043. [86] SALAMA M,SRINIVAS S. Adaptive neighborhood simulated annealing for sustainability-oriented single machine scheduling with deterioration effect[J]. Applied Soft Computing,2021,110:107632. [87] CHEN X,LI J,DU Y. A hybrid evolutionary immune algorithm for fuzzy flexible job shop scheduling problem with variable processing speeds[J]. Expert Systems with Applications,2023,233:120891. [88] PAN Z,LEI D,WANG L. A knowledge-based two- population optimization algorithm for distributed energy- efficient parallel machines scheduling[J]. IEEE Transactions on Cybernetics,2020,52(6):5051-5063. [89] LI X,GAO L,PAN Q,et al. An effective hybrid genetic algorithm and variable neighborhood search for integrated process planning and scheduling in a packaging machine workshop[J]. IEEE Transactions on Systems,Man,and Cybernetics:Systems,2018,49(10):1933-1945. [90] LIU Q,LI X,GAO L,et al. Mathematical model and discrete artificial Bee Colony algorithm for distributed integrated process planning and scheduling[J]. Journal of Manufacturing Systems,2021,61:300-310. [91] ZHANG Z,TANG R,PENG T,et al. A method for minimizing the energy consumption of machining system:integration of process planning and scheduling[J]. Journal of Cleaner Production,2016,137:1647-1662. [92] WANG Y,WANG M,LIN S. Selection of cutting conditions for power constrained parallel machine scheduling[J]. Robotics and Computer-Integrated Manufacturing,2017,43:105-110. [93] HE B,LIU R,LI T. Integrated carbon footprint with cutting parameters for production scheduling[J]. Journal of Cleaner Production,2023,412:137307. [94] HUANG Z,LI H,CAO H,et al. Energy-saving control strategy for multi-sleep states of CNC machine tool considering components priority[J]. IEEE Transactions on Industrial Electronics,2023,70(8):4500-4510. [95] LIU C,MENG X,LIU C,et al. Carbon footprint-based optimization method for remanufacturing machining paths[J]. The International Journal of Advanced Manufacturing Technology,2022,124(10):3391-3406. [96] LI C,WU S,YI Q,et al. A cutting parameter energy- saving optimization method considering tool wear for multi-feature parts batch processing[J]. The International Journal of Advanced Manufacturing Technology,2022,121(7):4941-4960. [97] SREDANOVIC B,CICA D,BOROJEVIC S,et al. Optimization of superalloy Inconel 718 micro-milling process by combined Taguchi and multi-criteria decision making method[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2024,46(7):423. [98] ZHANG T,JI W,QIU Y. A framework of energy- consumption driven discrete manufacturing system[J]. Sustainable Energy Technologies and Assessments,2021,47:101336. [99] SUN M,CAI Z,ZHAO N. Design of intelligent manufacturing system based on digital twin for smart shop floors[J]. International Journal of Computer Integrated Manufacturing,2023,36(4):542-566. [100] BOSCARIOL P,RICHIEDEI D. Energy optimal design of servo-actuated systems:A concurrent approach based on scaling rules[J]. Renewable and Sustainable Energy Reviews,2022,156:111923. [101] SHNEOR Y. Reconfigurable machine tool:CNC machine for milling,grinding and polishing[J]. Procedia Manufacturing,2018,21:221-227. [102] GIAMPIERI A,LING CJ,MA Z,et al. A review of the current automotive manufacturing practice from an energy perspective[J]. Applied Energy,2020,261:114074. [103] WU S,LI C,JIN Y,et al. Design of gear hobbing machine based on analytical target cascading:Modeling, decomposition and independent optimization[J]. IEEE Transactions on Automation Science and Engineering, 2025,22:12033-12046. |
[1] | 黄思翰, 陈建鹏, 徐哲, 阎艳, 王国新. 基于大语言模型和机器视觉的智能制造系统人机自主协同作业方法[J]. 机械工程学报, 2025, 61(3): 130-141. |
[2] | 张党, 赵永宣, 王振军, 张映锋. 数据-知识混合驱动的离散制造系统智能控制体系构架研究[J]. 机械工程学报, 2024, 60(6): 1-10,20. |
[3] | 王文波, 张映锋, 顾寄南, 张耿, 完严. 数据驱动的离散制造系统性能退化机理建模与预测控制方法研究[J]. 机械工程学报, 2024, 60(16): 400-411. |
[4] | 汪俊亮, 高鹏捷, 张洁, 王力翚. 制造大数据分析综述:内涵、方法、应用和趋势[J]. 机械工程学报, 2023, 59(12): 1-16. |
[5] | 张倩, 单忠德, 吴乐, 王绍宗, 田媛. 船舶分段多工位协同制造系统数学模型研究及应用[J]. 机械工程学报, 2020, 56(9): 191-198. |
[6] | 孔繁森. 制造系统可靠性分析的框架与动力学机制[J]. 机械工程学报, 2020, 56(20): 223-236. |
[7] | 高贵兵, 岳文辉, 王峰. 考虑性能参数变化的混流制造系统脆弱性评估方法[J]. 机械工程学报, 2019, 55(18): 215-224. |
[8] | 刘飞, 刘培基, 李聪波, 庹军波, 蔡维. 制造系统能量效率研究的现状及难点问题*[J]. 机械工程学报, 2017, 53(5): 1-11. |
[9] | 张恒, 李爱平, 刘雪梅, 徐立云. 一类考虑返修和产品多态性的多级串联制造系统建模与性能分析[J]. 机械工程学报, 2017, 53(18): 191-201. |
[10] | 王国新, 黄思翰, 阎艳, 杜景军. 考虑机床闲置和工件绕路的可重构制造系统工件族构建相似性算法*[J]. 机械工程学报, 2016, 52(21): 146-154. |
[11] | 张青雷, 郝文玲, 段建国, 付玉敏. 考虑系统重用和加工任务重现的制造系统布局重组规划[J]. 机械工程学报, 2015, 51(3): 170-181. |
[12] | 王峻峰;李世其;刘继红. 能量有效的离散制造系统研究综述[J]. , 2013, 49(11): 89-97. |
[13] | 段建国;李爱平;谢楠;徐立云. 基于状态熵的制造系统结构复杂性建模与评价[J]. , 2012, 48(5): 92-100. |
[14] | 段建国;李爱平;谢楠;徐立云. 可重构制造系统多态可靠性建模与分析[J]. , 2011, 47(17): 104-111. |
[15] | 张志峰;JINDAL V. 基于尖点突变的制造系统耗散结构模型及其度量[J]. , 2011, 47(14): 192-198. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||