机械工程学报 ›› 2025, Vol. 61 ›› Issue (11): 140-161.doi: 10.3901/JME.2025.11.140
• 机械动力学 • 上一篇
童水光1,2, 江一波1,2,3, 杨鲜苗1,2, 童哲铭1,2
收稿日期:
2024-06-06
修回日期:
2024-12-20
发布日期:
2025-07-12
作者简介:
童水光,男,1960年出生,博士,教授,博士研究生导师。主要研究方向为高端装备数字化设计。E-mail:cetongsg@zju.edu.cn;江一波,男,1997年出生,博士,副教授。主要研究方向为齿轮传动系统动力学分析与设计。E-mail:jiangyb@fzu.edu.cn;杨鲜苗,女,1994年出生,博士研究生。主要研究方向为齿轮传动系;统动力学性能设计。E-mail:12125103@zju.edu.cn;童哲铭(通信作者),男,1988年出生,博士,教授,博士研究生导师。主要研究方向为旋转机械优化设计。E-mail:tzm@zju.edu.cn
基金资助:
TONG Shuiguang1,2, JIANG Yibo1,2,3, YANG Xianmiao1,2, TONG Zheming1,2
Received:
2024-06-06
Revised:
2024-12-20
Published:
2025-07-12
摘要: 齿轮传动系统是装备制造业中不可或缺的重要部件,随着海洋、航空、交通、能源等领域高端装备服役环境日益复杂,高转速、高负载、剧烈扰动等极端工况时有出现,导致齿轮传动系统振动噪声激增,直接威胁高端装备的整机可靠性、舒适性和隐蔽性。因此,齿轮传动系统的动力学性能已成为制约系统和整机运行性能的关键,迫切需要围绕齿轮传动系统的动力学性能开展设计。在广泛调研国内外研究成果的基础上,归纳了现有的齿轮传动系统动力学性能分析手段,梳理了影响系统动力学性能的若干内外激励因素,强调了多源内外激励和不确定性因素对系统动力学性能的潜在影响,总结了齿轮传动系统动力学性能指标的单目标优化设计、多目标优化设计及不确定性/稳健性优化设计方法,介绍了齿轮传动系统动力学性能分析与设计方法在船舶、航空航天、轨道交通、风电、机器人等场景下的应用现状,探讨了系统动力学性能设计的未来发展方向。有助于全面构建齿轮传动系统动力学性能设计体系,对改善齿轮传动系统振动噪声特性、提升齿轮传动系统综合性能具有借鉴意义。
中图分类号:
童水光, 江一波, 杨鲜苗, 童哲铭. 齿轮传动系统动力学性能设计研究与应用进展[J]. 机械工程学报, 2025, 61(11): 140-161.
TONG Shuiguang, JIANG Yibo, YANG Xianmiao, TONG Zheming. State of Art of Dynamic Performance Design of Gear Transmission System and Its Applications[J]. Journal of Mechanical Engineering, 2025, 61(11): 140-161.
[1] 吴吉展,魏沛堂,刘怀举,等. 航空齿轮钢表面完整性与滚动接触疲劳性能关联规律研究[J]. 机械工程学报,2023,1-12. WU Jizhan,WEI Peitang,LIU Huaiju,et al. Study on the correlation between surface integrity and rolling contact fatigue performance of aviation gear steel[J]. Journal of Mechanical Engineering,2023,1-12. [2] 朱才朝,陆波,宋朝省,等. 大功率船用齿轮箱系统耦合非线性动态特性研究[J]. 机械工程学报,2009,45(9):31-35. ZHU Caichao,LU Bo,SONG Chaosheng,et al. Research on nonlinear coupling dynamic characteristics of large burden marine gearbox[J]. Journal of Mechanical Engineering,2009,45(9):31-35. [3] 陈再刚,唐亮,杨吉忠,等. 考虑齿轮齿条动态激励的山地齿轨车辆-轨道耦合动力学特性分析[J]. 机械工程学报,2023,59(8):163-173. CHEN Zaigang,TANG Liang,YANG Jizhong,et al. Dynamic characteristic analysis of racked railway vehicle-track coupling system with considering the dynamic excitation of gear-rack transmission[J]. Journal of Mechanical Engineering,2023,59(8):163-173. [4] 朱永超,朱才朝,谭建军,等. 考虑数据特征差异的风电齿轮箱群组健康状态预测研究[J]. 机械工程学报,2023,1-12. ZHU Yongchao,ZHU Caichao,TAN Jianjun,et al. Health status prediction of wind turbine gearbox cluster considering data distribution discrepancy[J]. Journal of Mechanical Engineering,2023,1-12. [5] 邱星辉,韩勤锴,褚福磊. 风力机行星齿轮传动系统动力学研究综述[J]. 机械工程学报,2014,50(11):23-36. QIU Xinghui,HAN Qinkai,CHU Fulei. Review on dynamic analysis of wind turbin geared transmission systems[J]. Journal of Mechanical Engineering,2014,50(11):23-36. [6] TUPLIN W A. Gear-tooth stresses at high speed[J]. Proceedings of the Institution of Mechanical Engineers,1950,163(1):162-175. [7] KAHRAMAN A,SINGH R. Non-linear dynamics of a spur gear pair[J]. Journal of Sound and Vibration,1990,142:49-75. [8] KAHRAMAN A,SINGH R. Non-linear dynamics of a geared rotor-bearing system with multiple clearances[J]. Journal of Sound and Vibration,1991,144(3):469-506. [9] AL-SHYYAB A,KAHRAMAN A. Non-linear dynamic analysis of a multi-mesh gear train using multi-term harmonic balance method :Period-one motions[J]. Journal of Sound and Vibration,2005,284:151-172. [10] HE S,CHO S,SINGH R. Prediction of dynamic friction forces in spur gears using alternate sliding friction formulations[J]. Journal of Sound and Vibration,2008,309(3):843-851. [11] 魏静,孙清朝,孙伟,等. 高速机车牵引齿轮传动系统动态特性及非线性因素影响研究[J]. 振动与冲击,2012(17):38-43. WEI Jing,SUN Qingchao,SUN Wei,et al. Dynamic analysis and effects of nonlinear factors of a gear transmission system for high speed locomotive[J]. Journal of Vibration and Shock,2012(17):38-43. [12] KAHRAMAN A. Planetary gear train dynamics[J]. Journal of Mechanical Design,1994,116(3):713-720. [13] PARKER R G. A physical explanation for the effectiveness of planet phasing to suppress planetary gear vibration[J]. Journal of Sound and Vibration,2000,236(4):561-573. [14] 陈奇,姚志刚,王亚东,等. 考虑时变刚度与侧隙影响的非对称渐开线齿轮动力学特性研究[J]. 机械传动,2019,43(4):15-20. CHEN Qi,YAO Zhigang,WANG Yadong,et al. Dynamics characteristic analysis of involute gear with asymmetric tooth considering the influence of time- varying stiffness and backlash[J]. Journal Mechanical Transimission,2019,43(4):15-20. [15] HE Z,XING Z,ZHOU Q,et al. Dynamic analysis of a combined spiral bevel gear and planetary gear set in a bucket elevator with high power density[J]. Sustainability,2023,15(5):4304. [16] TUNG L,CHAN Y. A time-variant dynamic model for compound epicyclic-cycloidal reducers[J]. Mechanism and Machine Theory,2023,179:105095. [17] MO S,HUANG Z,LIU Y,et al. Nonlinear dynamics of non-orthogonal offset face gear-bearing transmission system[J]. International Journal of Non-Linear Mechanics,2023,155:104461. [18] LIN T,OU H,LI R. A finite element method for 3D static and dynamic contact/impact analysis of gear drives[J]. Computer Methods in Applied Mechanics and Engineering,2007,196(9-12):1716-1728. [19] SAXENA A,CHOUKSEY M,PAREY A. Measurement of FRFs of coupled geared rotor system and the development of an accurate finite element model[J]. Mechanism and Machine Theory,2018,123:66-75. [20] 钱露露,唐进元,陈思雨,等. 单级齿轮传动系统有限元节点动力学模型及高速动力学特性分析 [J].机械工程学报,2016,52(17):155-161. QIAN Lulu,TANG Jinyuan,CHEN Siyu,et al. Dynamic modeling of a one-stage gear system by finite element method and the dynamic analysis in high speed[J]. Journal of Mechanical Engineering,2016,52(17):155-161. [21] 乔自珍,周建星,章翔峰. 多源时变激励下两级直齿轮传动系统有限元建模方法研究[J]. 振动与冲击,2019,38(15):182-189. QIAO Zizhen,ZHOU Jianxing,ZHANG Xiangfeng. Finite element modelling method for a two-stage spur gear transmission system under multi-source time-varying excitations[J]. Journal of Vibration and shock,2019,38(15):182-189. [22] 董惠敏,梁世文,张闯. 耦合弹性支承的齿轮传动系统性能分析方法[J]. 机械传动,2018,42(11):107-112. DONG Huimin,LIANG Shiwen,ZHANG Chuang. A performance analysis method of gear drive system coupled with elastic supports[J]. Journal Mechanical Transimission,2018,42(11):107-112. [23] WANG G,LIN C,LI Y,et al. Research on the dynamic transmission error of a spur gear pair with eccentricities by finite element method[J]. Mechanism and Machine Theory,2017,109:1-13. [24] NEUFOUND J,DENIMAL E,RIGAUD E,et al. Whining noise computation of a planetary gear set induced by the multi-mesh excitations[J]. Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2019,233(21-22):7236-7245. [25] MA Y,ZHANG X,FANG Z,et al. A new analysis technology of the vibration characteristic of the gearbox case of herringbone gear reducer[J]. Applied Acoustics,2023,205:109289. [26] DAI X,COOLEY C G,PARKER R G. An efficient hybrid analytical-computational method for nonlinear vibration of spur gear pairs[J]. Journal of Vibration and Acoustics,2018,141(1):011006. [27] ABRUZZO M,BEGHINI M,SANTUS C,et al. A dynamic model combining the average and the local meshing stiffnesses and based on the static transmission error for spur gears with profile modification[J]. Mechanism and Machine Theory,2023,180:105139. [28] MOLAIE M,SAMANI F S,ZIPPO A,et al. Spiral bevel gears:Bifurcation and chaos analyses of pure torsional system[J]. Chaos,Solitons and Fractals,2023,177:114179. [29] HOU L,LEI Y,FU Y,et al. Effects of lightweight gear blank on noise,vibration and harshness for electric drive system in electric vehicles[J]. Proceedings of the Institution of Mechanical Engineers,Part K:Journal of Multi-body Dynamics ,2020,234(3):447-464. [30] LIU C,ZHAO Y,WANG Y,et al. Hybrid dynamic modeling and analysis of high-speed thin-rimmed gears[J]. Journal of Mechanical Design,2021,143(12):123401. [31] GUAN X,TANG J,HU Z,et al. A new dynamic model of light-weight spur gear transmission system considering the elasticity of the shaft and gear body[J]. Mechanism and Machine Theory,2022,170:104689. [32] LIU J,LI X,PANG R,et al. Dynamic modeling and vibration analysis of a flexible gear transmission system[J]. Mechanical Systems and Signal Processing,2023,197:110367. [33] CHEN Y,CHENG X,CHOI S T. Dynamic analysis of a helical geared rotor-bearing system with composite rotating shafts[J]. Aircraft Engineering and Aerospace Technology,2021,93(10):1699-1708. [34] TAN J,LI H,TANG H,et al. Dynamic modeling and analysis of planetary gear train system considering structural flexibility and dynamic multi-teeth mesh process[J]. Mechanism and Machine Theory,2023,186:105348. [35] WAN Z,CAO H,ZI Y,et al. Mesh stiffness calculation using an accumulated integral potential energy method and dynamic analysis of helical gears[J]. Mechanism and Machine Theory,2015,92:447-463. [36] CAO Z,CHEN Z,JIANG H. Nonlinear dynamics of a spur gear pair with force-dependent mesh stiffness[J]. Nonlinear Dynamics,2020,99(2):1227-1241. [37] SHI Z,LI S. Nonlinear dynamics of hypoid gear with coupled dynamic mesh stiffness[J]. Mechanism and Machine Theory,2022,168:104589. [38] TIAN Z,TANG J,HU Z,et al. Modeling of flexible bevel gear rotor systems:Modal and dynamic characterization[J]. Thin-Walled Structures,2024,197:111627. [39] 田德,陶立壮,胡玥,等. 基于齿廓修形和摩擦耦合的风电齿轮磨损动力学特性分析[J]. 太阳能学报,2022,43(5):260-269. TIAN De,TAO Lizhuang,HU Yue,et al. Dynamics of wind turbine gear wear fault based on tooth profile modification and friction coupling[J]. Acta Energiae Solaris Sinica,2022,43(5):260 [40] NING J,CHEN Z,WANG Y,et al. Vibration feature of spur gear transmission with non-uniform depth distribution of tooth root crack along tooth width[J]. Engineering Failure Analysis,2021,129:105713. [41] WANG S,ZHU R. Research on dynamics and failure mechanism of herringbone planetary gearbox in wind turbine under gear surface pitting[J]. Engineering Failure Analysis,2023,146:107130. [42] LIU G,HONG J,PARKER R G. Influence of simultaneous time-varying bearing and tooth mesh stiffness fluctuations on spur gear pair vibration[J]. Nonlinear Dynamics,2019,97(2):1403-1424. [43] XU H,WANG P,YANG Y,et al. Effects of supporting stiffness of deep groove ball bearings with raceway misalignment on vibration behaviors of a gear-rotor system[J]. Mechanism and Machine Theory,2022,177:105041. [44] SONG C,BAI H,ZHU C,et al. Computational investigation of off-sized bearing rollers on dynamics for hypoid gear-shaft-bearing coupled system[J]. Mechanism and Machine Theory,2021,156:104177. [45] AMARAL D R,ICHCHOU M N,KOLAKOWSKI P,et al. Lightweight gearbox housing with enhanced vibro-acoustic behavior through the use of locally resonant metamaterials[J]. Applied Acoustics,2023,210:109435. [46] 胥良,史春宝,龙威,等. 轴承及箱体刚度对传动系统动态特性的影响[J]. 机械传动,2015,39(7):170-175. XU Liang,SHI Chunbao,LONG Wei,et al. Effect of stiffness of bearings and gearbox housing on the dynamic characteristic of drive system[J]. Journal Mechanical Transimission,2015,39(7):170-175. [47] KONG X,TANG J,CHEN S,et al. Effects of gearbox housing flexibility on dynamic characteristics of gear transmission system[J]. Journal of Vibration and Control,2021,27(17-18):2097-2108. [48] SEZGEN H,TINKIR M. Optimization of torsional vibration damper of cranktrain system using a hybrid damping approach[J]. Engineering Science and Technolog,2021,24(4):959-973. [49] GILMORE P,GANDHI U,SINGH R. Effect of disk-to-disk variations on the nonlinear static characteristics and stability regimes of coned disk spring stacks:Experimental and computational studies of quasi-zero-stiffness isolators[J]. Mechanical Systems and Signal Processing,2024,219:111609. [50] GAO P,YAN K,LIU H,et al. Integrated transmission vibration reduction technology based on the “isolating-reducing-optimizing” method[J]. Mechanical Systems and Signal Processing,2024,206:110918. [51] HONG H,JEONG K,ON S,et al. Structural optimization of an arch-structured epoxy/rubber composite vibration isolator using deep Q-value neural network reinforcement learning[J]. Composite Structures,2023,323:117506. [52] SAHU S,ROYCHOWDHURY S. Static and dynamic analysis of a hyperelastic toroidal air-spring structure[J]. European Journal of Mechanics,A/Solids,2025,109:105461. [53] WANG Q,CHEN Z,WANG Y,et al. A metamaterial isolator with tunable low frequency stop-band based on magnetorheological elastomer and magnet spring[J]. Mechanical Systems and Signal Processing,2024,208:111029. [54] LIU J,WANG Y,YANG S,et al. Customized quasi-zero-stiffness metamaterials for ultra-low frequency broadband vibration isolation[J]. International Journal of Mechanical Sciences,2024,269:108958. [55] JIANG H,LIU F. Dynamic modeling and analysis of elastic isolation damping gears[J]. Journal of Vibroengineering,2022,24(4):637-650. [56] CHUNG Y,WU Y. Dynamic modeling of a gear transmission system containing damping particles using coupled multi-body dynamics and discrete element method[J]. Nonlinear Dynamics,2019,98(1):129-149. [57] 任红军,张昊,于晓光,等. 五平行轴压缩机齿轮系统非线性动力学特性研究[J]. 机械工程学报,2017,53(23):39-45. REN Hongjun,ZHANG Hao,YU Xiaoguang,et al. Nonlinear dynamics of the gear system in five shaft integrally geared centrifugal compressor[J]. Journal of Mechanical Engineering,2017,53(23):39-45. [58] XIANG L,ZHANG Y,GAO N,et al. Nonlinear dynamics of a multistage gear transmission system with multi-clearance[J]. International Journal of Bifurcation and Chaos,2018,28(3):1850034. [59] MOLAIE M,SAMANI F S,ZIPPO A,et al. Spiral bevel gears:Nonlinear dynamic model based on accurate static stiffness evaluation[J]. Journal of Sound and Vibration,2023,544:117395. [60] LIN H,OSWALD F B,TOWNSEND D P. Dynamic loading of spur gears with linear or parabolic tooth profile modifications[J]. Mechanism and Machine Theory,1994,29(8):1115-1129. [61] KAHRAMAN A,BLANKENSHIP G W. Effect of involute tip relief on dynamic response of spur gear pairs[J]. Journal of Mechanical Design,1999,121(2):313-315. [62] ERITENEL T,PARKER R G. Nonlinear vibration of gears with tooth surface modifications[J]. Journal of Vibration and Acoustics,2013,135(5):051005. [63] MA H,YANG J,SONG R,et al. Effects of tip relief on vibration responses of a geared rotor system[J]. Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2014,228(7):1132-1154. [64] MU Y,HE X,FANG Z. An innovative ease-off flank modification method based on the dynamic performance for high-speed spiral bevel gear with high-contact-ratio[J]. Mechanism and Machine Theory,2021,162:104345. [65] FERNANDEZ A,IGLESIAS M,DE-JUAN A,et al. Gear transmission dynamic:Effects of tooth profile deviations and support flexibility[J]. Applied Acoustics,2014,77:138-149. [66] REN F,QIN D,LIM T C,et al. Study on dynamic characteristics and load sharing of a herringbone planetary gear with manufacturing errors[J]. International Journal of Precision Engineering and Manufacturing,2014,15(9):1925-1934. [67] YAO Z,WANG J,ZHAO Y X. Dynamic responses and control of geared transmission system based on multibody modeling methodology[J]. Journal of Vibration and Control,2023,29(3-4):543-561. [68] CHUNG W J,PARK Y J,CHOI C,et al. Effects of manufacturing errors of gear macro-geometry on gear performance[J]. Scientific Reports,2023,13(1):1-14. [69] HAN H,MA H,TIAN H,et al. Sideband analysis of cracked planetary gear train considering output shaft radial assembly error[J]. Mechanical Systems and Signal Processing,2023,200:110618. [70] 丁景伟,靳广虎,朱如鹏. 中心距误差分配模型对分扭传动系统动态特性的影响研究[J]. 机械传动,2021,45(7):1-11. DING Jingwei,JIN Guanghu,ZHU Rupeng. Research on the influence of center distance error distribution model on dynamic characteristic of split torque transmission system[J]. Journal of Mechanical Transmission,2021,45(7):1-11. [71] VELEX P,SAINSOT P. An analytical study of tooth friction excitations in errorless spur and helical gears[J]. Mechanism and Machine Theory,2002,37(7):641-658. [72] LUO W,QIAO B,SHEN Z,et al. Influence of sliding friction on the dynamic characteristics of a planetary gear set with the improved time-varying mesh stiffness[J]. Journal of Mechanical Design,2020,142(7):073302. [73] WANG S,ZHU R. Nonlinear dynamic analysis of GTF gearbox under friction excitation with vibration characteristics recognition and control in frequency domain[J]. Mechanical Systems and Signal Processing,2021,151:107373. [74] HE S,GUNDA R,SINGH R. Effect of sliding friction on the dynamics of spur gear pair with realistic time-varying stiffness[J]. Journal of Sound and Vibration,2007,301(3):927-949. [75] XU H,KAHRAMAN A,ANDERSON N E,et al. Prediction of mechanical efficiency of parallel-axis gear pairs[J]. Journal of Mechanical Design,2007,129(1):58-68. [76] LI S,KAHRAMAN A. A tribo-dynamic model of a spur gear pair[J]. Journal of Sound and Vibration,2013,332(20):4963-4978. [77] OUYANG T,SU Z,LI S,et al. Experimental and numerical investigations on dynamic characteristics of gear-roller-bearing system [J]. Mechanism and Machine Theory,2019,140:730-746. [78] YIN L,DENG C,YU W,et al. Dynamic characteristics of gear system under different micro-topographies with the same roughness on tooth surface[J]. Journal of Central South University,2020,27(8):2311-2323. [79] XIAO Z,ZHOU C,CHEN S,et al. Effects of oil film stiffness and damping on spur gear dynamics[J]. Nonlinear Dynamics,2019,96(1):145-159. [80] THEODOSSIADES S,TANGASAWI O,RAHNEJAT H. Gear teeth impacts in hydrodynamic conjunctions promoting idle gear rattle[J]. Journal of Sound and Vibration,2007,303(3):632-658. [81] LI Z,ZHU C,LIU H,et al. Mesh stiffness and nonlinear dynamic response of a spur gear pair considering tribo-dynamic effect:Manuscript submitted for publication in Mechanism and Machine Theory[J]. Mechanism and Machine Theory,2020,153:103989. [82] FERNANDEZ-DEL-RINCON A,DIEZ-IBARBIA A,THEODOSSIADES S. Gear transmission rattle:Assessment of meshing forces under hydrodynamic lubrication[J]. Applied Acoustics,2019,144:85-95. [83] GUO D,NING Q,GE S,et al. Nonlinear characteristic analysis of gear rattle based on refined dynamic model[J]. Nonlinear Dynamics,2022,110(4):3109-3133. [84] CHENG G,MA J,LI J,et al. Study on the dynamic characteristics of gears considering surface topography in a mixed lubrication state[J]. Lubricants,2024,12(1):7. [85] ZHANG K,SHEN R,HU Z,et al. Dynamic modeling and analysis considering friction-wear coupling of gear system[J]. International Journal of Mechanical Sciences,2024,275:109343. [86] HUANGFU Y,DONG X,CHEN K,et al. A tribo-dynamic based pitting evolution model of planetary gear sets:A topographical updating approach[J]. International Journal of Mechanical Sciences,2022,220:107157. [87] ZHAO J,HOU L,LI Z,et al. Prediction of tribological and dynamical behaviors of spur gear pair considering tooth root crack[J]. Engineering Failure Analysis,2022,135:106145. [88] KHABOU M T,BOUCHAALA N,CHAARI F,et al. Study of a spur gear dynamic behavior in transient regime[J]. Mechanical Systems and Signal Processing,2011,25(8):3089-3101. [89] CHAARI R,KHABOU M T,BARKALLAH M,et al. Dynamic analysis of gearbox behaviour in milling process:Non-stationary operations[J]. Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2015,230(19):3372-3388. [90] 冯海生,王黎钦,郑德志,等. 考虑变工况冲击的齿轮动态啮合力分析[J]. 振动、测试与诊断,2015,35(2):212-217,394. FENG Haisheng,WANG Liqin,ZHENG Dezhi,et al. Analysis of gear dynamic meshing force considering variable condition impact[J]. Journal of Vibration,Measurement & Diagnosis,2015,35(2):212-217,394. [91] 代鹏,王建平,鲁珏,等. 变工况下裂纹故障直齿轮副振动特性分析[J]. 振动与冲击,2022,41(11):225-234. DAI Peng,WANG Jianping,LU Jue,et al. Vibtation characteristics analysis of spur gear pair with crack fault under variable working conditions[J]. Journal of Vibration and Shock,2022,41(11):225-234. [92] 常浩,吕凯波,廉自生,等. 变载工况下CST齿轮传动系统的动态特性[J]. 机械传动,2017,41(6):124-128. CHANG Hao, LÜ Kaibo,LIAN Zisheng,et al. Dynamic characteristic of CST gear transmission system under varying load working condition[J]. Journal of Mechanical Transmission,2017,41(6):124-128. [93] 时培明,赵娜,梁凯,等. 变载荷激励下齿轮传动系统齿根裂纹故障动力学特性分析[J]. 机械强度,2017,39(5):1001-1006. SHI Peiming,ZHAO Na,LIANG Kai,et al. Analysis on dynamic characteristics of tooth root crack of gear drive system under variable load excitation[J]. Journal of Mechanical Strength,2017,39(5):1001-1006. [94] QIU X,HAN Q,CHU F. Dynamic modeling and analysis of the planetary gear under pitching base motion[J]. International Journal of Mechanical Sciences,2018,141:31-45. [95] 曹杰,任尊松,查浩,等.高速动车组齿轮箱轴承载荷特性研究[J]. 机械工程学报,2024,60(15):1-12. CAO Jie,REN Zunsong,CHA Hao,et al. Load characteristics of gearbox bearing of high-speed EMU[J]. Journal of Mechanical Engineering,2024,60(15):1-12. [96] 魏静,史磊,张爱强,等. 飞行环境非惯性系下行星齿轮传动系统耦合动力学建模及其动态特性[J]. 机械工程学报,2019,55(23):162-172. WEI Jing,SHI Lei,ZHANG Aiqiang,et al. Modeling and dynamic characteristics of planetary gear transmission in non-inertial system of aerospace environment[J]. Journal of Mechanical Engineering,2019,55(23):162-172. [97] 谭建军,朱才朝,李浩,等. 基础运动对漂浮式风电机组齿轮箱传动系统附加激励的影响[J]. 机械工程学报,2023,59(1):35-49. TAN Jianjun,ZHU Caichao,LI Hao,et al. Influences of base motions on additional excitations of gloating wind turbine gearbox transmission system[J]. Journal of Mechanical Engineering,2023,59(1):35-49. [98] TONG Z,HU Y,TONG S,et al. Dynamic modeling of spur gear system under marine ship heaving-pitching motion[J]. Ocean Engineering,2023,283:115069. [99] 陈思雨,唐进元. 间隙对含摩擦和时变刚度的齿轮系统动力学响应的影响[J]. 机械工程学报,2009,45(8):119-124. CHEN Siyu,TANG Jinyuan. Effect of backlash on dynamics of spur gear pair system with friction and time-varying stiffness[J]. Journal of Mechanical Engineering,2009,45(8):119-124. [100] 廖映华,秦大同,刘长钊. 考虑内部激励随机性的两级分流式人字齿轮传动动力学特性[J]. 振动与冲击,2015,34(1):206-212. LIAO Yinghua,QIN Datong,LIU Changzhao. Dynamic characteristics of two-stage split herringbone gear trains considering the randomness of internal excitations[J]. Journal of Vibration and Shock,2015,34(1):206-212. [101] GUERINE A,EL HAMI A,WALHA L,et al. A polynomial chaos method for the analysis of the dynamic behavior of uncertain gear friction system[J]. European Journal of Mechanics - A/Solids,2016,59:76-84. [102] WEI S,ZHAO J,HAN Q,et al. Dynamic response analysis on torsional vibrations of wind turbine geared transmission system with uncertainty[J]. Renewable Energy,2015,78:60-67. [103] GUERINE A,EL HAMI A,WALHA L,et al. Dynamic response of wind turbine gear system with uncertain-but-bounded parameters using interval analysis method[J]. Renewable Energy,2017,113:679-687. [104] WANG J,ZHANG J. Effects of random interval parameters on spur gear vibration[J]. Journal of Vibration and Control,2020,27(19-20):2332-2344. [105] HU Y,DU Q,XIE S. Nonlinear dynamic modeling and analysis of spur gears considering uncertain interval shaft misalignment with multiple degrees of freedom[J]. Mechanical Systems and Signal Processing,2023,193(381):110261. [106] LAFI W,GHARBI F,AKROUT A,et al. Effects of interval friction coefficients on the differential mechanism dynamics[J]. Proceedings of the Institution of Mechanical Engineers,Part D:Journal of Automobile Engineering,2022,236(14):3268-3295. [107] CHEN Z,JIANG Y,LI S,et al. Uncertainty propagation of correlated lubricant properties in gear tribodynamic system[J]. Tribology International,2023,179:107812. [108] SHI J,GOU X,JIN W,et al. Multi-meshing-state and disengaging-proportion analyses of a gear-bearing system considering deterministic-random excitation based on nonlinear dynamics[J]. Journal of Sound and Vibration,2023,544:117360. [109] WANG J,YANG S,LIU Y,et al. Analysis of load-sharing behavior of the multistage planetary gear train used in wind generators:Effects of random wind load[J]. Applied Sciences,2019,9(24):5501. [110] 秦大同,杨军,周志刚,等. 变载荷激励下风电行星齿轮系统动力学特性[J]. 中国机械工程,2013,24(3):295-301. QIN Datong,YANG Jun,ZHOU Zhigang,et al. dynamic characteristic of planetary gear system of wind turbines under varying load[J]. Chinese Mechanical Engineering,2013,24(3):295-301. [111] WANG Y,ZHANG W. Stochastic vibration model of gear transmission systems considering speed-dependent random errors[J]. Nonlinear Dynamics,1998,17(2):187-203. [112] WANG Y,ZHANG W. Modelling of gear stochastic vibration considering non-white noise errors[J]. Chinese Science Bulletin,1999,44(4):375-378. [113] MO E,NAESS A. Nonsmooth dynamics by path integration:an example of stochastic and chaotic response of a meshing gear pair[J]. Journal of Computational and Nonlinear Dynamics,2009,4(3):34501. [114] 卢剑伟,曾凡灵,杨汉生,等. 随机装配侧隙对齿轮系统动力学特性的影响分析[J]. 机械工程学报,2010,46(21):82-86. LU Jianwei,ZENG Fanling,YANG Hansheng,et al. Influence of stochastic assembling backlash on nonlinear dynamic behavior of transmission gear pair[J]. Journal of Mechanical Engineering,2010,46(21):82-86. [115] JIANG Y,TONG S,TONG Z,et al. Tribodynamic analysis of spur gear drives with uncertain time-variant loads:An interval process approach[J]. Mechanism and Machine Theory,2024,191:105511. [116] GAO P,LIU H,YAN P,et al. Research on application of dynamic optimization modification for an involute spur gear in a fixed-shaft gear transmission system[J]. Mechanical Systems and Signal Processing,2022,181:109530. [117] BRUYERE J,VELEX P. Towards general performance diagrams to define optimum profile and lead modifications with regard to transmission error in spur and helical gears[J]. Mechanism and Machine Theory,2022,176:105021. [118] 杨丽,佟操,陈闯,等. 基于Kriging模型和遗传算法的齿轮修形减振优化[J]. 航空动力学报,2017,32(6):1412-1418. YANG Li,TONG Cao,CHEN Chuang,et al. Vibration reduction optimization of gear modification based on Kriging model and genetic alforithm[J]. Journal of Aerospace Power,2017,32(6):1412-1418. [119] MARAFONA J D M,CARNEIRO G N,MARQUES P M T,et al. Gear design optimization:Stiffness versus dynamics[J]. Mechanism and Machine Theory,2024,191:105503. [120] 汤亮,何仁杰,龚发云,等. 变风载下风电齿轮箱内部激励规律研究及动态特性优化[J]. 工程设计学报,2020,27(2):212-222. TANG Liang,HE Renjie,GONG Fayun,et al. Internal excitation law research and dynamic characteristic optimization of wind turbine gearbox under varying wind load[J]. Chinese Journal of Engineering Design,2020,27(2):212-222. [121] ZHAO X,YAN X,CHEN Z,et al. Dynamic and static multiobjective topology optimization for gears of directional drill transmission system[J]. Advances in Civil Engineering,2023,2023. [122] ZHANG X,FANG Z,YIN X,et al. Research on methods of tooth contact analysis and modification optimization for internal spur gear pair[J]. Journal of Mechanical Engineering Science,2022,236(19),10175-10184. [123] RAUT A,KHOT S,SALUNKHE V. Optimization of geometrical features of spur gear pair teeth for minimization of vibration generation[J]. Journal of Vibration Engineering and Technologies,2024,12(1):533-545. [124] PENG X,ZHOU J. Optimization design for dynamic characteristics of face gear drive with surface-active modification[J]. Mechanism and Machine Theory,2022,176:105007. [125] 蒋进科,刘钊,彭先龙. Ease-Off修形准双曲面齿轮减振优化设计[J]. 华南理工大学学报,2020,48(5):134-141,148. JIANG Jjinke,LIU Zhao,PENG Xianlong. Optimization design of vibration reduction for hypoid gears with ease-off flank modification[J]. Journal of South China University of Technology,2020,48(5):134-141,148. [126] YAN P,LIU H,GAO P,et al. Optimization of distributed axial dynamic modification based on the dynamic characteristics of a helical gear pair and a test verification[J]. Mechanism and Machine Theory,2021,163:104371. [127] 彭先龙,周健,方宗德. 主动修形面齿轮副的减振优化[J]. 华中科技大学学报,2023,51(6):83-90. PENG Xianlong,ZHOU Jian,FANG Zongde. Optimization of vibration reduction for face gear pair with active modification[J]. Journal of South China University of Technology,2023,51(6):83-90. [128] YOUNES E B,CHANGENET C,BRUYERE J,et al. Multi-objective optimization of gear unit design to improve efficiency and transmission error[J]. Mechanism and Machine Theory,2022,167:104499. [129] QIU L,HOU X,GAO S,et al. Vibration optimization of spur gear based on GSA-SA algorithm[J]. Plos One,2023,18(11):e0293460. [130] 林腾蛟,曹洪,谭自然,等. 四级行星齿轮减速器耦合系统动态性能优化[J]. 机械工程学报,2018,154(11):161-171. LIN Tengjiao,CAO Hong,TAN Ziran,et al. Dynamic performance optimization of coupled system for four-stage planetary gear reducer[J]. Journal of Mechanical Engineering,2018,154(11):161-171. [131] 王铭康,周长江,刘义,等. 基于安装调整的弧齿锥齿轮接触轨迹与传动误差优化[J]. 机械传动,2022,46(1):65-72. WANG Mingkang,ZHOU Changjiang,LIU Yi,et al. Optimization of contact path and transmission error based on installation and adjustment of spiral bevel gear[J]. Journal of Mechanical Transmission,2022,46(01):65-72. [132] WANG C. Multi-objective optimal design of modification for helical gear[J]. Mechanical Systems and Signal Processing,2021,157:107762. [133] GUILBAULT R,LALONDE S. Tip relief designed to optimize contact fatigue life of spur gears using adapted PSO and Firefly algorithms[J]. SN Applied Sciences,2021,3(1):1-21. [134] KORTA J A,MUNDO D. Multi-objective micro-geometry optimization of gear tooth supported by response surface methodology[J]. Mechanism and Machine Theory,2017,109:278-295. [135] MU Y,HOU X,YANG S,et al. An innovative collaborative design of shape and performance for super-high-contact-ratio spiral bevel gear[J]. International Journal of Precision Engineering and Manufacturing,2023,24(5):813-823. [136] KIM B,CHUNG W,KIM S,et al. Optimum design of planetary gear set using multi-objective optimization considering mass,power loss and transmission error[J]. Mechanics Based Design of Structures and Machines,2023,1-24. [137] CHEN H,FAN J,JING S,et al. Probabilistic design optimization of wind turbine gear transmission system based on dynamic reliability[J]. Journal of Mechanical Science and Technology,2019,33(2):579-589. [138] CUI D,WANG G,LU Y,et al. Reliability design and optimization of the planetary gear by a GA based on the DEM and Kriging model[J]. Reliability Engineering and System Safety,2020,203:107074. [139] 陈鹏,董红涛,王三民,等. 安装误差下弧齿锥齿轮齿面6σ稳健优化设计[J]. 航空动力学报,2021,36(09):1871-1879. CHEN Peng,DONG Hongtao,WANG Sanmin,et al. Tooth surface 6σ robust optimization desgin under installation error of spiral bevel gear[J]. Journal of Aerospace Power,2021,36(9):1871-1879. [140] MOHAMMED O,BHAT A,FALK P. Robust multi-objective optimization of gear microgeometry design[J]. Simulation Modelling Practice and Theory,2022,119:102593. [141] GARAMBOIS P,PERRET-LIAUDET J,RIGAUD E. NVH robust optimization of gear macro and microgeometries using an efficient tooth contact model[J]. Mechanism and Machine Theory,2017,117:78-95. [142] KORTA J,MUNDO D. A population-based meta-heuristic approach for robust micro-geometry optimization of tooth profile in spur gears considering manufacturing uncertainties[J]. Meccanica,2018,53:447-464. [143] CAO B,LI G,TAO Y,et al. Robust geometric parameter optimization of a crossed beveloid gear pair with approximate line contact[J]. Mechanism and Machine Theory,2022,168:104596. [144] MÉLOT R,RIGAUD E,PERRET-LIAUDET J. Robust design of vibro-impacting geared systems with uncertain tooth profile modifications via bifurcation tracking[J]. International Journal of Non-Linear Mechanics,2023,149:104336. [145] 袁冰,常山,刘更,等. 考虑齿距累积误差的人字齿轮系统动态特性分析[J]. 振动与冲击,2020,39(3):120-126. YUAN Bing,CHANG Shan,LIU Geng,et al. Dynamic characteristics of a double helical gear system considering accumulation pitch error[J]. Journal of Vibration and shock,2020,39(3):120-126. [146] GONG J,LIU G,YUAN B,et al. Coupled dynamics characteristics analysis of the marine multi-gearbox system under multi-source excitation[J]. Advances in Mechanical Engineering,2022,14(4):16878132221093000. [147] YANG L,YUAN B,GONG J,et al. Dynamic modelling and vibration characteristics of a marine compound gear transmission system[J]. Proceedings of the Institution of Mechanical Engineers,Part K:Journal of Multi-body Dynamics,2023,237(2):261-278. [148] REN Y,CHANG S,LIU G. Study on low vibration isolator arrangement of marine gearboxes based on an impedance model[J]. Transactions of the Canadian Society for Mechanical Engineering,2020,44(4):580-591. [149] 魏博文,常山,栾圣罡,等. 基于AHP方法的行星齿轮箱箱体阻尼敷设方案评价研究[J]. 热能动力工程,2024,39(3):200-206. WEI Bowen,CHANG Shan,LUAN Shenggang,et al. Evaluation of damping laying scheme of planetary gear box based on AHP method[J]. Journal of Engineering for Thermal Energy and Power,2024,39(3):200-206. [150] XU J,JIAO C,ZOU D,et al. Study on the dynamic behavior of herringbone gear structure of marine propulsion system powered by double-cylinder turbines[J]. Science China Technological Sciences,2022,65(3):611-630. [151] XU J,LIU X,XIE Z,et al. Analysis and prediction of vibro-acoustic characteristics of parallel propulsion systems for large-scale marine ships[J]. Applied Ocean Research,2024,143:103863. [152] WANG S,ZHU R,FENG J. Study on load sharing behavior of coupling gear-rotor-bearing system of GTF aero-engine based on multi-support of rotors[J]. Mechanism and Machine Theory,2020,147:103764. [153] ZHANG C,ZHU R,CHEN W,et al. Dynamic modeling and analysis of the supercritical tail drive system of a helicopter considering the mounting platform deformation[J]. Nonlinear Dynamics,2024,112(11):9063-9094. [154] MU Y,HOU X,HE X. Research on active precontrol strategy for shape and performance of helicopter spiral bevel gears[J]. Applied Sciences,2023,13(14):8527. [155] ANURADHA G,SAGI R P,SHAKYA P,et al. Influence of geometric parameters on the dynamic performance of spiral bevel gear[J]. Journal of Vibration Engineering and Technologies,2024. [156] KONG X,TANG J,HU Z,et al. Dynamic modeling and vibration analysis of spur gear system considering thin-walled gear and hollow shaft[J]. Mechanism and Machine Theory,2023,181:105197. |
[1] | 陈刚利, 俞利庆, 崔海龙, 刘聪, 陈开强. 三线槽式自补偿液体静压导轨油膜刚度优化设计[J]. 机械工程学报, 2025, 61(5): 26-39. |
[2] | 姚静, 王定煜, 何蔼雯, 郝金鹿, 汪飞雪. 变容式非金属压力油箱柔性壳体优化设计方法[J]. 机械工程学报, 2025, 61(10): 439-449. |
[3] | 吕利叶, 鲁玉军, 王硕, 刘印, 李昆鹏, 宋学官. 代理模型技术及其应用:现状与展望[J]. 机械工程学报, 2024, 60(3): 254-281. |
[4] | 代松杰, 张辉, 陈佳伟, 缑翰驰, 郭世理, 董光能. 扇形推力轴承边界滑移区域的优化设计[J]. 机械工程学报, 2024, 60(21): 196-206. |
[5] | 孟磊, 周平, 闫英, 郭东明. 基于不确定性分析的半球陀螺谐振子高性能制造[J]. 机械工程学报, 2024, 60(21): 254-262. |
[6] | 王旭, 姜兴宇, 杨国哲, 孙猛, 于沈弘, 毕凯航, 赵日铮, 刘伟军. 基于PSO-SSA的激光清洗装备人机界面布局优化研究[J]. 机械工程学报, 2024, 60(20): 372-387. |
[7] | 彭翔, 陈轲楠, 王明博, 易兵, 李吉泉, 姜少飞. 基于改进堆叠顺序表法的变厚度复合结构铺层序列优化设计[J]. 机械工程学报, 2024, 60(19): 199-211. |
[8] | 张艳斌, 张世雄, 孙维光, 张继旺, 张立民. 混合动力动车组动力包隔振设计及试验研究[J]. 机械工程学报, 2024, 60(16): 314-323. |
[9] | 赵峰, 胡伟飞, 李光, 邓晓豫, 刘振宇, 郭云飞, 谭建荣. 基于混合指标自适应采样代理模型的多目标优化设计方法[J]. 机械工程学报, 2024, 60(13): 81-91. |
[10] | 胡伟飞, 廖家乐, 郭云飞, 鄢继铨, 李光, 岳海峰, 谭建荣. 基于物理信息神经网络的时变可靠性分析方法[J]. 机械工程学报, 2024, 60(13): 141-153. |
[11] | 张德权, 李星奥, 贾新宇, 叶楠, 韩旭. 基于分层贝叶斯推理的RV减速器动力学模型修正及动态响应预测方法[J]. 机械工程学报, 2024, 60(11): 135-144. |
[12] | 刘强, 高晴利, 王伟, 韩邦成, 牛萍娟, 王子羲. 激光巨量转移复合型运动平台用洛伦兹磁轴承[J]. 机械工程学报, 2024, 60(1): 198-209. |
[13] | 谷永振, 段宝岩, 杜敬利, 史伟杰, 张永涛, 武路鹏, 冯树飞. 基于改进力密度法和非线性有限元法的索-膜-桁架天线形态优化设计[J]. 机械工程学报, 2023, 59(9): 252-262. |
[14] | 张广冬, 黄翔. 以制品几何精度为目标的塑料挤出模具优化设计方法[J]. 机械工程学报, 2023, 59(8): 142-150. |
[15] | 范小宁, 王凯, 余畅. 基于约束边界抽样的起重机金属结构可靠性优化[J]. 机械工程学报, 2023, 59(8): 288-298. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||