[1] WEI Y,YANG X,XU Z,et al. Novel ground microgravity experiment system for a spacecraft- manipulator system based on suspension and air- bearing[J]. Aerospace Science and Technology,2023,141:108587. [2] HE J,SHEN M,GAO F,et al. Active compliance control of a position-controlled industrial robot for simulating space operations[J]. Chinese Journal of Mechanical Engineering,2023,36(1):1. [3] WEI Y,YANG X,BAI X,et al. Hardware-in-the-loop based ground test system for space berthing and docking mechanism of small spacecraft[J]. Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering,2023,237(15):3486-3495. [4] DUBOWSKY S,DURFEE W,CORRIGAN T,et al. A laboratory test bed for space robotics:The VES II[C]//Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Munich:IEEE,1994:1562-1569. [5] 张飞龙,贺云,李秋实,等. 空间站载荷转移机构机器人的力加载控制方法[J]. 机器人,2018,40(2):249-256. ZHANG Feilong,HE Yun,LI Qiushi,et al. The control method of force loading of robot on load transfer mechanism of space station[J]. Robot,2018,40(2):249-256. [6] 尹猛,徐志刚,白鑫林,等. 基于气浮的卫星挠性旋转帆板物理仿真系统设计[J]. 空间科学学报,2017,37(3):338-343. YIN Meng,XU Zhigang,BAI Xinlin,et al. Design of physical simulation system for satellite flexible rotating panels based on fotation[J]. Chinese Journal of Space Science,2017,37(3):338-343. [7] ZHU Z,ZHANG G,SONG J,et al. Use of dynamic scaling for trajectory planning of floating pedestal and manipulator system in a microgravity environment[J]. Microgravity Science and Technology,2018,30(4):511-523. [8] SONG Z,CHEN C,JIANG S,et al. Optimization analysis of microgravity experimental facility for the deployable structures based on force balance method[J]. Microgravity Science and Technology,2020,32(5):773-785. [9] AGRAWAL S K,HIRZINGER G,LANDZETTEL K,et al. A new laboratory simulator for study of motion of free- floating robots relative to space targets[J]. IEEE Transactions on Robotics and Automation,1996,12(4):627-633. [10] 田大可,范小东,郑夕健,等. 空间可展开天线微重力环境模拟研究现状与展望[J]. 机械工程学报,2021,57(3):11-25. TIAN Dake,FAN Xiaodong,ZHENG Xijian,et al. Research status and prospect of micro-gravity environment simulation for space deployable antenna[J]. Journal of Mechanical Engineering,2021,57(3):11-25 [11] LIU Z Q,QIU H,LI X,et al. Review of large spacecraft deployable membrane antenna structures[J]. Chinese Journal of Mechanical Engineering,2017,30(6):1447-1459. [12] XU Y,BROWN H B,FRIEDMAN M,et al. Control system of the self-mobile space manipulator[J]. IEEE Transactions on Control Systems Technology,1994,2(3):207-219. [13] 杨国永,王洪光,姜勇,等. 气浮试验台重力卸载精度分析[J]. 机械工程学报,2019,55(5):1-10. YANG Guoyong,WANG Hongguang,JIANG Yong,et al. Gravity unloading precision analysis of air bearing facility[J]. Journal of Mechanical Engineering,2019,55(5):1-10 [14] 贺云,张飞龙,杨明毅,等. 卫星天线展开臂的随动吊挂重力补偿系统设计[J]. 机器人,2018,40(3):377-384. HE Yun,ZHANG Feilong,YANG Mingyi,et al. Design of tracking suspension gravity compensation system for satellite antenna deployable manipulator[J]. Robot,2018,40(3):377-384. [15] FUJII H,UCHIYAMA K,YONEOKA H,et al. Ground-based simulation of space manipulators using test bed with suspension system[J]. Journal of Guidance,Control,and Dynamics,1996,19(5):985-991. [16] FISCHER A,PELLEGRINO S. Interaction between gravity compensation suspension system and deployable structure[J]. Journal of Spacecraft and Rockets,2000,37(1):93-99. [17] MUGNUOLO R,BRACCIAFERRI F,DIDOT F,et al. Europa (external use of robotics for payloads automation)[C]//2001 Conference and Exhibit on International Space Station Utilization. Cape Canaveral:AIAA,1999:1-10. [18] 林旭梅,梅涛. 地面失重实验系统的控制器设计[J]. 中国科学技术大学学报,2008,38(5):542-548. LIN Xumei,MEI Tao. The controller design of ground microgravity testing system[J]. Journal of University of Science and Technology of China,2008,38(5):542-548. [19] 孟瑶. 巡视器地面六分之一重力模拟中的控制研究[D]. 哈尔滨:哈尔滨工业大学,2010. MENG Yao. The study of control systemdesign on lunar gravity simulator in an earth gravity environment[D]. Harbin:Harbin Institute of Technology,2010. [20] VALLE P,DUNGAN L,CUNNINGHAM T,et al. Active response gravity offload system[J]. NASA Tech Briefs,2011,35(9):23. [21] ORR S,CASLER J,RHOADES J,et al. Effects of walking,running,and skipping under simulated reduced gravity using the NASA Active Response Gravity Offload System (ARGOS)[J]. Acta Astronautica,2022,197:115-125. [22] 张伟,白鑫林,徐志刚. 空间转位机械臂转动惯量的地面仿真研究[J]. 机械设计与制造,2020(3):43-46. ZHANG Wei,BAI Xinlin,XU Zhigang. Ground simulation of inertia moment witch suffer by space arm during transposition[J]. Machinery Design and Manufacture,2020(3):43-46. [23] 杨原青,徐志刚,王军义,等. 太空转位机械臂刚性特征研究[J]. 兵器装备工程学报,2019,40(5):94-98. YANG Yuanqing,XU Zhigang,WANG Junyi,et al. Research on rigid characteristics of space manipulator[J]. Journal of Ordnance Equipment Engineering,2019,40(5):94-98. [24] EUN Y,PARK S Y,KIM G N. Development of a hardware-in-the-loop testbed to demonstrate multiple spacecraft operations in proximity[J]. Acta Astronautica,2018,147:48-58. [25] XU J,BAO G,YANG Q J,et al. Design and development of a 5-dof air-bearing spacecraft simulator[C]//2009 International Asia Conference on Informatics in Control,Automation and Robotics. Bangkok:IEEE,2009:126-130. [26] ROBERTSON A D. Control system design for spacecraft formation flying:Theory and experiment[D]. Stanford:Stanford University,2001. [27] CHO D M,JUNG D,TSIOTRAS P. A 5-DOF experimental platform for spacecraft rendezvous and docking[C]//AIAA Infotech@Aerospace Conference. Seattle:AIAA,2009:1-20. [28] MONTI R,BARBONI R,GASBARRI P,et al. An experimental testbed to simulate space manipulators GNC[C]//2011 Aerospace Conference. Big Sky:IEEE,2011:1-8. [29] SCHLOTTERER M,THEIL S. Testbed for on-orbit servicing and formation flying dynamics emulation[C]//AIAA Modeling and Simulation Technologies Conference. Toronto:AIAA,2010:1-17. [30] MENON C,BUSOLO S,COCUZZA S,et al. Issues and solutions for testing free-flying robots[J]. Acta Astronautica,2007,60(12):957-965. [31] CIARCIÀ,M,CRISTI R,ROMANO M M. Emulating scaled Clohessy-Wiltshire dynamics on an air-bearing spacecraft simulation testbed[J]. Journal of Guidance,Control,and Dynamics,2017(1):1-15. [32] VIRGILI-LLOP J,ZAGARIS C,ZAPPULLA R,et al. A convex-programming-based guidance algorithm to capture a tumbling object on orbit using a spacecraft equipped with a robotic manipulator[J]. The International Journal of Robotics Research,2019,38(1):40-72. [33] WILDE M,KAPLINGER B D,GO T H. ORION:A teaching and research platform for simulation of space proximity operations[C]//AIAA SPACE 2015 Conference and Exposition. Pasadena:AIAA,2015:1-10. [34] WILDE M,KAPLINGER B,GO T,et al. ORION:A simulation environment for spacecraft formation flight,capture,and orbital robotics[C]//2016 IEEE Aerospace Conference,Big Sky:IEEE,2016:1-14. [35] GALLARDO D,BEVILACQUA R,RASMUSSEN R. Advances on a 6 degrees of freedom testbed for autonomous satellites operations[C]//AIAA Guidance,Navigation,and Control Conference. Portland:AIAA,2011:1-17. [36] RCDS A,RAB A,SB B,et al. A review of balancing methods for satellite simulators[J]. Acta Astronautica,2021,187:537-545. [37] CHO S,SHEN J,MCCLAMROCH N H. Mathematical models for the triaxial attitude control testbed[J]. Mathematical and Computer Modelling of Dynamical Systems,2003,9(2):165-192. |