• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (9): 241-251.doi: 10.3901/JME.2025.09.241

• 机器人及机构学 • 上一篇    

扫码分享

基于悬吊与气浮的航天器-机械臂地面微重力实验系统

徐志刚1, 位亚强1,2, 卢翰1,2, 贺云1, 白鑫林1,3, 赵真4, 张啸1   

  1. 1. 中国科学院沈阳自动化研究所 沈阳 110016;
    2. 中国科学院大学 北京 100049;
    3. 华中科技大学机械科学与工程学院 武汉 430074;
    4. 上海宇航系统工程研究所 上海 201109
  • 收稿日期:2024-09-29 修回日期:2025-01-07 发布日期:2025-06-12
  • 通讯作者: 徐志刚,男,1971年出生,博士,研究员,博士研究生导师。主要研究方向为航天器地面仿真和高端武器系统智能制造。E-mail:zgxu@sia.cn E-mail:zgxu@sia.cn
  • 作者简介:位亚强,男,1997年出生,博士研究生。主要研究方向为空间机器人的轨迹规划与动力学控制、航天地面仿真。E-mail:yqwei97@gmail.com
  • 基金资助:
    上海市协同创新专项(XTCX-KJ-2024-55)资助项目。

Ground Microgravity Experiment System for Spacecraft-manipulator Based on Air-bearing and Suspension

XU Zhigang1, WEI Yaqiang1,2, LU Han1,2, HE Yun1, BAI Xinlin1,3, ZHAO Zhen4, ZHANG Xiao1   

  1. 1. Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016;
    2. University of Chinese Academy of Sciences, Beijing 100049;
    3. School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074;
    4. Institute of Aerospace System Engineering Shanghai, Shanghai 201109
  • Received:2024-09-29 Revised:2025-01-07 Published:2025-06-12

摘要: 随着航天技术的不断发展,现有航天地面微重力实验系统无法为大质量惯量航天器和大尺寸空间机械臂的组合体提供长时稳定的地面微重力环境。针对组合体中航天器质量惯量大与机械臂三维运动的特点,提出了基于悬吊和气浮组合的航天器-机械臂地面微重力实验系统。悬吊重力平衡系统和气浮重力平衡系统分别用于平衡大尺寸空间机械臂和大质量惯量航天模拟器的重力;在目标航天模拟器上,设计了2自由度旋转机构以实现大质量惯量航天器的地面6自由度运动;同时,采用比例配重方法使目标航天模拟器的动力学特性与真实航天器保持一致。为了提高多空间机械臂重力平衡精度,提出了多悬吊点优化与控制算法,并进行了航天器-机械臂转位实验。结果表明,该系统可为航天器-机械臂的地面实验提供高精度的微重力水平,可进行双臂空间机器人捕获非合作目标和精细维护维修等地面实验,并为航天器地面微重力模拟环境的构建提供了新的思路。

关键词: 微重力实验系统, 2自由度旋转机构, 悬吊重力平衡系统, 气浮重力平衡系统, 比例配重方法

Abstract: With the continuous development of aerospace technology, the existing aerospace ground microgravity experiment system cannot provide a long-term and stable ground microgravity environment for the combination of the large mass or inertia spacecraft and the large-scale space manipulator. Considering this characteristic, a spacecraft-manipulator ground microgravity experiment system based on suspension and air-bearing is proposed, where suspension is used to compensate the gravity of the large-scale space manipulator, and air-bearing is used to compensate the gravity of the large mass or inertia spacecraft simulator. In order to realise the ground six-degree-of-freedom motion of a large mass or inertia spacecraft, a two-degree-of-freedom rotation mechanism is designed in the target spacecraft simulator, and a proportional weighting approach is introduced to make the dynamic characteristics of the target spacecraft simulator consistent with the real spacecraft same. Moreover, multiple suspension optimization and control algorithms are proposed. A spacecraft-manipulator transposition experiment is conducted to verify the gravity compensation accuracy of the system. Experiment results show the system can provide high-precision microgravity levels for ground experiments of the spacecraft-manipulator, and even carry out other ground experiments such as capturing non-cooperative targets, fine maintenance and repairs by dual-arm space robots. The experiment system also provides new inspiration for the construction of a ground microgravity experiment environment for aerospace.

Key words: microgravity experiment system, two-degree-of-freedom rotation mechanism, suspension gravity compensation system, air-bearing gravity compensation system, proportional weighting approach

中图分类号: