• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (9): 231-240.doi: 10.3901/JME.2025.09.231

• 机器人及机构学 • 上一篇    

扫码分享

面向机器人操作的柔性线缆视觉分割与抓取位姿生成算法

王松, 蒋潇, 吴丹   

  1. 清华大学机械工程系 北京 100084
  • 收稿日期:2024-05-06 修回日期:2024-09-20 发布日期:2025-06-12
  • 通讯作者: 吴丹,女,1966年出生,博士,教授,博士研究生导师。主要研究方向为机器人加工与操作。E-mail:wud@tsinghua.edu.cn E-mail:wud@tsinghua.edu.cn
  • 作者简介:王松,男,2000年出生,博士研究生。主要研究方向为计算机视觉、机器人加工与操作。E-mail:wangs23@mails.tsinghua.edu.cn;蒋潇,男,2000年出生,博士研究生。主要研究方向为机器人轨迹规划、机器人加工与操作。E-mail:jiangx22@mails.tsinghua.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(52375019)。

Visual Segmentation and Grasping Pose Generation Algorithms for Robotic Manipulation of Flexible Cables

WANG Song, JIANG Xiao, WU Dan   

  1. Department of Mechanical Engineering, Tsinghua University, Beijing 100084
  • Received:2024-05-06 Revised:2024-09-20 Published:2025-06-12

摘要: 柔性线缆的高维度以及线缆之间复杂的拓扑关系使得机器人自动操作柔性线缆具有相当的难度。以带端子柔性线缆的自动化插接任务为背景,聚焦机器人操作时线缆拓扑关系和端子空间位姿的视觉感知问题,针对已有研究存在线缆间拓扑关系解耦时前端语义分割网络能力不足、残缺点云端子空间抓取鲁棒性差的问题,提出了基于区域生长的语义分割后处理算法,利用神经网络输出掩膜作为先验信息,以超像素块作为生长单位,选择颜色、方向和形状为编码特征进行区域生长,实现了高效分割补全;提出了局部特征驱动的抓取位姿生成算法,结合插接需求设计夹爪并提取鲁棒特征,将问题简化为复杂点云成分下的平面拟合问题,通过随机抽样一致算法剔除局外点,利用主成分分析法提取主方向并生成抓取位姿。设计语义分割和空间端子抓取算法评价实验,结果表明:相比已有算法,所提算法分割效果好、抓取成功率高。

关键词: 柔性线缆, 语义分割, 位姿生成, 鲁棒抓取

Abstract: Manipulation of flexible cables is a significant challenging task for robots due to the infinite dimensionality of the state space and confusing topological relations of the cables. Based on the industrial requirement of insertion automation of cables with terminals, most studies are focused on visual perception of cable topology and terminal spatial poses estimation during robotic manipulation. However, previous work shows limited capability of front-end semantic segmentation networks for decoupling cable topology and unsatisfied robustness of grasping incomplete point cloud terminals. To address these problems, a semantic segmentation post-processing algorithm, based on region growing, is proposed. The key insight is that the neural network output masks are utilized as prior information, with super-pixel blocks serving as growth units and color, orientation, and shape selected as coding features for region growing, leading to efficient segmentation completion. Moreover, a local feature-driven grasping pose generation algorithm is proposed. Considering a type of insertion terminals, the grippers are specially designed and the robust grasping features are thus extracted. This facilitates problem simplifying to plane fitting amidst complex point cloud components. In this solution, the random sample consensus algorithm is employed to eliminate the outliers, and the principal component analysis method extracts the main direction for grasping pose generation. Finally, specially developed experiments are conducted to evaluate both the semantic segmentation and spatial terminal grasping algorithms. The results exhibit superior performance over existing methods in segmentation effectiveness and grasping success rate.

Key words: flexible cable, semantic segmentation, pose generation, robust grasping

中图分类号: