[1] 黄俊锋. 用于工业机器人自动插线系统的视觉识别与定位关键技术研究[D]. 广州:华南理工大学,2020. HUANG Junfeng. Research on key technologies of visual recognition and positioning for industrial robot automatic wiring system[D]. Guangzhou:South China University of Technology,2020. [2] 吕乃静,刘检华. 柔性线缆的机器人自动敷设关键技术与发展趋势[J]. 机械工程学报,2022,58(17):75-95. LÜ Naijing,LIU Jianhua. Key technologies and development trend of robot automatic laying of flexible cables[J]. Journal of Mechanical Engineering,2022,58(17):75-95. [3] HE Kaiming,GKIOXARI G,DOLLÁR P,et al. Mask r-cnn[C]//Proceedings of the IEEE International Conference on Computer Vision,Hawaii,USA. Piscataway:IEEE,2017:2961-2969 [4] KIRILLOV A,WU Yuxin,HE Kaiming,et al. Pointrend:Image segmentation as rendering[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,Seattle,USA. Piscataway:IEEE,2020:9799-9808. [5] KIRILLOV A,MINTUN E,RAVI N,et al. Segment anything[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,Paris,France. Piscataway:IEEE,2023:4015-4026. [6] CAPORALI A,ZANELLA R,De GREOGRIO D,et al. Ariadne+:deep learning-based augmented framework for the instance segmentation of wires[J]. IEEE Transactions on Industrial Informatics,2022,18(12):8607-8617. [7] CAPORALI A,GALASSI K,ZANELLA R,et al. FASTDLO:fast deformable linear objects instance segmentation[J]. IEEE Robotics and Automation Letters,2022,7(4):9075-9082. [8] CAPORALI A,GALASSI K,ŽAGAR B L,et al. RT-DLO:real-time deformable linear objects instance segmentation[J]. IEEE Transactions on Industrial Informatics,2023,19(11),11333-11342. [9] LONG J,SHELHAMER E,DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Boston,USA. Piscataway:IEEE,2015:3431-3440. [10] CHEN L C,ZHU Yukun,PAPANDREOU G,et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the European conference on computer vision (ECCV),Munich,Germany. Berlin:Springer,2018:801-818. [11] SUN Zhaole,ZHOU Hang,LI Nanbo,et al. A robust deformable linear object perception pipeline in 3D:from segmentation to reconstruction[J]. IEEE Robotics and Automation Letters,2023,9(1):843-850. [12] DE GREGORIO D,PALLI G,Di STEFANO L. Let's take a walk on superpixels graphs:Deformable linear objects segmentation and model estimation[C]//Asian Conference on Computer Vision. Perth,Australia. Berlin:Springer,2018:662-677. [13] JIN Peng,LIU Shaoli,LIU Jianhua,et al. Weakly-supervised single-view dense 3D point cloud reconstruction via differentiable renderer[J]. Chinese Journal of Mechanical Engineering,2021,34:1-11. [14] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision,2004,60:91-110. [15] BAY H,TUYTELAARS T,Van GOOL L. Surf:speeded up robust features[C]//Computer Vision-ECCV 2006:9th European Conference on Computer Vision,Graz,Austria. Berlin:Springer,2006:404-417. [16] RUBLEE E,RABAUD V,KONOLIGE K,et al. ORB:An efficient alternative to SIFT or SURF[C]//2011 International Conference on Computer Vision,Barcelona,Spain. Piscataway:IEEE,2011:2564-2571. [17] BESL P J,MCKAY N D. Method for registration of 3-D shapes[C]//Sensor fusion IV:Control Paradigms and Data Structures,Boston,USA. Washington:Spie,1992,1611:586-606. [18] 张瑾贤,吴晓峰,叶才铭,等. 一种基于点云场景分割与改进配准算法的物体位姿估计方法[J]. 机械工程学报,2023,59(22):176-185. ZHANG Jinxian,WU Xiaofeng,YE Caiming,et al. Object pose estimation method based on point cloud scene segmentation and improved registration[J]. Journal of Mechanical Engineering,2023,59(22):176-185. [19] WEN B,TREMBLAY J,BLUKIS V,et al. Bundlesdf:Neural 6-dof tracking and 3d reconstruction of unknown objects[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,Vancouver Canada. Piscataway:IEEE,2023:606-617. [20] FANG H S,WANG C,FANG H,et al. Anygrasp:robust and efficient grasp perception in spatial and temporal domains[J]. IEEE Transactions on Robotics,2023. [21] NIU Boshen,WANG Chenxi,LIU Changliu. Tolerance-guided policy learning for adaptable and transferrable delicate industrial insertion[C]//Conference on Robot Learning,London,UK. New York:PMLR,2021:2030-2039. [22] ZHANG Di,AN Qichao,FENG Xiaoxue,et al. Unstructured road extraction in UAV images based on lightweight model[J]. Chinese Journal of Mechanical Engineering,2024,37(1):45. [23] ACHANTA R,SHAJI A,SMITH K,et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE transactions on Pattern Analysis and Machine Intelligence,2012,34(11):2274-2282. [24] BERTAIMIO M,BERTOZZI A L,SAPIRO G. Navier-stokes,fluid dynamics,and image and video inpainting[C]//Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,Kauai,USA. Piscataway:IEEE,2001,1:I-I. [25] FISCHLER M A,BOLLES R C. Random sample consensus:A paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM,1981,24(6):381-395. [26] MACKIEWICZ A,RATAJCZAK W. Principal components analysis (PCA)[J]. Computers & Geosciences,1993,19(3):303-342. [27] REN Shaoqing,HE Kaiming,GIRSHICK R,et al. Faster r-cnn:towards real-time object detection with region proposal networks[J]. Advances in Neural Information Processing Systems,2015,28:1. [28] ROBBINS H,MONRO S. A stochastic approximation method[J]. The Annals of Mathematical Statistics,1951(1):400-407. [29] YU Mingrui,LÜ Kangchen,ZHONG Hanzhong,et al. Global model learning for large deformation control of elastic deformable linear objects:an efficient and adaptive approach[J]. IEEE Transactions on Robotics,2022,39(1):417-436. [30] RUSU R B,BLODOW N,BEETZ M. Fast point feature histograms (FPFH) for 3D registration[C]//2009 IEEE International Conference on Robotics and Automation,Kobe,Japan. Piscataway:IEEE,2009:3212-3217. |