机械工程学报 ›› 2023, Vol. 59 ›› Issue (19): 411-428.doi: 10.3901/JME.2023.19.411
杨磊1,2, 周磊2, 林宇东2, 欧阳震1, 闫春泽1, 史玉升1
收稿日期:
2023-05-16
修回日期:
2023-07-01
出版日期:
2023-10-05
发布日期:
2023-12-11
通讯作者:
史玉升(通信作者),男,1962年出生,博士,教授,主要研究方向为增材制造技术。E-mail:shiyusheng@hust.edu.cn
作者简介:
杨磊,男,1988年出生,博士,副教授。主要研究方向为纤维增强复合材料增材制造。E-mail:jackyejackye@163.cm;闫春泽,男,1975年出生,博士,教授,主要研究方向为非金属材料增材制造。E-mail:c_yan@hust.edu.cn
基金资助:
YANG Lei1,2, ZHOU Lei2, LIN Yudong2, OUYANG Zhen1, YAN Chunze1, SHI Yusheng1
Received:
2023-05-16
Revised:
2023-07-01
Online:
2023-10-05
Published:
2023-12-11
摘要: 碳纤维增强复合材料由于其比重小以及良好的力学和化学性能,广泛应用于航空航天、轨道交通和新能源汽车等领域。连续纤维增强复合材料与短纤维相比具有更好的性能,而增材制造的发展为该材料复杂构件的设计与成形提供了有效途径。重点论述了四种激光增材制造连续碳纤维增强复合材料的工艺方法,包括激光辅助自动铺带(Laser-assisted automated tape placement, L-ATP)、激光辅助分层实体制造(Laser-assisted laminated object manufacturing, L-LOM)、激光辅助熔融沉积成型(Laser-assisted fused deposition manufacturing, L-FDM)和机器人激光增材制造(Robot-based laser additive manufacturing, R-LAM),详细论述了激光增材制造连续碳纤维增强复合材料的原料设计与制备、成形原理与装备和工艺特点,并对比讨论四种激光增材制造连续碳纤维增强复合材料工艺方法的应用范围和优缺点,展望碳纤维复合材料增材制造未来发展趋势。
中图分类号:
杨磊, 周磊, 林宇东, 欧阳震, 闫春泽, 史玉升. 激光增材制造连续碳纤维增强复合材料[J]. 机械工程学报, 2023, 59(19): 411-428.
YANG Lei, ZHOU Lei, LIN Yudong, OUYANG Zhen, YAN Chunze, SHI Yusheng. Laser Additive Manufacturing of Continuous Carbon Fiber Reinforced Composites[J]. Journal of Mechanical Engineering, 2023, 59(19): 411-428.
[1] BARILE C,CASAVOLA C,DE CILLIS F. Mechanical comparison of new composite materials for aerospace applications[J]. Composites Part B:Engineering,2019,162:122-128. [2] LI H L,FIORE L,JIANG Z. Composite materials for primary aircraft structures:From development phase to high volume production rate[J]. Civ Aircr Des Res,2020,1,125-128. [3] YANG D,CAO Y,ZHANG Z,et al. Effects of crystallinity control on mechanical properties of 3D-printed short-carbon-fiber-reinforced polyether ether ketone composites[J]. Polymer Testing,2021,97:107146. [4] CHANG B,LI X,PARANDOUSH P,et al. Additive manufacturing of continuous carbon fiber reinforced poly-ether-ether-ketone with ultrahigh mechanical properties[J]. Polymer Testing,2020,88:106563. [5] OROMIEHIE E,PRUSTY B G,COMPSTON P,et al. Automated fibre placement based composite structures:Review on the defects,impacts and inspections techniques[J]. Composite Structures,2019,224:110987. [6] CARVELLI V,NISHIDA H,FUJII T,et al. Low velocity impact and CAI of woven carbon fibre reinforced highly polymerized thermoplastic epoxy modified with submicron diameter glass fibres[J]. Composite Structures,2020,236:111835. [7] WANG F,WANG X,JIN X,et al. A comparison of cutting mechanisms of the carbon fibre reinforced thermoset and thermoplastic composites by the experimental and computational modelling methods[J]. Journal of Manufacturing Processes,2022,79:895-910. [8] YAO C,QI Z,CHEN W,et al. Experimental study on CF/PEEK thermoplastic fastener:Effects of fastener matrix crystallinity and fibre content on the strength of single-lap joint[J]. Composites Part B:Engineering,2021,213:108737. [9] 周晶晶. 连续碳纤增强热塑性复合材料制备及性能研究[D]. 大连:大连理工大学, 2019. ZHOU Jingjing. Preparation and properties of continuous carbon fiber reinforced thermoplastic composites[D]. Dalian:Dalian University of Technology, 2019. [10] VAN DE WERKEN N,TEKINALP H,KHANBOLOUKI P,et al. Additively manufactured carbon fiber-reinforced composites:State of the art and perspective[J]. Additive Manufacturing,2020,31:100962. [11] DEWADA S S,TELANG A. A review of recently developed polymer composite materials for fused deposition modeling 3D printing[J]. Materials Research Express,2021,8(12):122001. [12] HEIDARI-RARANI M,RAFIEE-AFARANI M,ZAHEDI A M. Mechanical characterization of FDM 3D printing of continuous carbon fiber reinforced PLA composites[J]. Composites Part B:Engineering,2019,175:107147. [13] TIAN X,TODOROKI A,LIU T,et al. 3D Printing of continuous fiber reinforced polymer composites:Development,application,and prospective[J]. Chinese Journal of Mechanical Engineering:Additive Manufacturing Frontiers,2022,1(1):100016. [14] ZHANG D,RUDOLPH N,WOYTOWITZ P. Reliable optimized structures with high performance continuous fiber thermoplastic composites from additive manufacturing (AM)[C]//Society for the Advancement of Material and Process Engineering,North Amercia:SAMPE,2019,20-23. [15] LEE H,LIM C H J,LOW M J,et al. Lasers in additive manufacturing:A review[J]. International Journal of Precision Engineering and Manufacturing-Green Technology,2017,4(3):307-22. [16] ÇELIK O,CHOUDHARY A,PEETERS D,et al. Deconsolidation of thermoplastic prepreg tapes during rapid laser heating[J]. Composites Part A:Applied Science and Manufacturing,2021,149:106575. [17] NAKAGAWA Y,MORI K-I,YOSHINO M. Laser-assisted 3D printing of carbon fibre reinforced plastic parts[J]. Journal of Manufacturing Processes,2022,73:375-84. [18] 塑料预浸料:术语定义和命名符号:GB/T 41488-2022[S]. 北京:国家市场监督管理总局,2022. Plastic prepreg:Definition of terms and naming symbols:GB/T 41488-2022[S]. Beijing:State Administration of Market Supervision and Administration,2022. [19] 李蓓蓓,朱家强,李炜. 国内外展纱技术及装备研究进展[J]. 玻璃钢/复合材料, 2014(11):91-95. LI Beibei,ZHU Jiaqiang,LI Wei. Research progress of yarn spreading technology and equipment at home and abroad[J]. Fiberglass/Composite Materials,2014(11):91-95. [20] WILSON S D R. Lateral spreading of fibre tows[J]. Journal of Engineering Mathematics,1997,32(1):19-26. [21] 石亚琦. 连续碳纤维气流展纱流场仿真及装置研究[D]. 北京:北京化工大学,2021. SHI Yaqi. Simulation of flow field and device for continuous carbon fiber airflow yarn[D]. Beijing:Beijing University of Chemical Technology,2021. [22] 徐挺,肖军,闫西涛. 超声辅助纤维束展纱效果研究[J]. 玻璃纤维, 2015(5):10-14. XU Ting,XIAO Jun,YAN Xitao. Research on the spreading effect of ultrasionic fiber spreading technology[J]. Fiber Glass,2015(5):10-4. [23] 黄明君,翟建广. 热塑性树脂熔融浸渍连续碳纤维装置及工艺研究[J]. 塑料工业, 2016,44(11):74-8. HUANG Mingjun,ZHAI Jianguang. Device technology for impregnation of continuous carbon fiber roving with thermoplastic resin melt[J]. China Plastics Industry,2016,44(11):74-78. [24] 华泽天,薛平,贾明印,等. 粉末浸渍法制备连续纤维增强热塑性复合材料研究进展[J]. 塑料科技, 2022,50(10):118-122. HUA Zetian,XUE Ping,JIA Mingyin,et al. Research progress of continuous fiber reinforced thermoplastic composites by powder impregnation[J]. Plastics Science and Technology,2022,50(10):118-122. [25] 张哲. 液相浸渍-碳化法制备碳/碳复合材料的工艺优化及力学性能研究[D]. 西安:长安大学,2019. ZHANG Zhe. Study on process optimization and mechanical properties of carbon/carbon composites prepared by liquid impregnation-carbonization[D]. Xi'an:Chang`an University,2019. [26] 许云鹏,颜春,刘东,等. 连续纤维增强热塑性预浸料制备工艺的研究进展[J]. 复合材料科学与工程, 2020(8):123-128. XU Yunpeng,YAN Chun,LIU Dong,et al. Rrogress in the preparation technology of continuous fiber reinforced thermoplastic prepregs[J]. Composites Science and Engineering,2020,2020(8):123-128. [27] 唐可. 连续纤维增强热塑性复合材料制备及界面结合的研究[D]. 北京:北京化工大学,2015. TANG Ke. Preparation of continuous fiber reinforced thermoplastic composites and study on the interface[D]. Beijing:Beijing University of Chemical Technology,2015. [28] 田小永,张亚园,刘腾飞,等. 连续碳纤维增强尼龙复合材料预浸丝制备与3D打印性能研究[J]. 航空制造技术, 2021,64(15):24-33. TIAN Xiaoyong,ZHANG Yayuan,LIU Tengfei,et al. Prepreg preparation and 3D printing of continuous carbon fiber reinforced nylon composite[J]. Aeronautical Manufacturing Technology,2021,64(15):24-33. [29] CHEN X,WANG Y,LIU M,et al. Preparation and process parameter optimization of continuous carbon fiber-reinforced polycarbonate prepreg filament[J]. Polymers (Basel),2023,15(3). [30] 梁宜楠. CF/PEEK点阵结构自动铺放原位成型工艺研究[D]. 大连:大连理工大学,2021. LIANG Yinan. Automatic fiber placement and in-situ consolidation process of CF/PEEK lattice structure[D]. Dalian:Dalian University of Technology,2021. [31] 李根. 连续碳纤维-聚醚醚酮预浸带熔融浸渍制备方法研究[D]. 哈尔滨:哈尔滨工业大学,2021. LI Gen. Study on the preparation of continuous carbon fiber reinforced PEEK prepreg tapes through melt impregnation method[D]. Harbin:Harbin Institute of Technology,2021. [32] 肖佳. 碳纤维编织复合材料层合板面内损伤机理的试验和数值研究[D]. 杭州:浙江理工大学,2022. XIAO Jia. Experimental and numerical study on in-plane compression failure mechanism of carbon fiber braided composite laminates[D]. Hangzhou:Zhejiang Sci-Tech University,2022. [33] 谢铁秦. 碳纤维/酚醛树脂预浸料储存老化及其复合材料成型工艺研究[D]. 兰州:兰州交通大学,2019. XIE Tieqin. Storage aging of carbon fiber/phenolic resin prepreg and its composite forming process[D]. Lanzhou:Lanzhou Jiaotong University,2019. [34] 王雨思. 先进复合材料自动铺带技术[J]. 塑料工业,2021,49(3):23-6. WANG Yusi. Automated tape laying for advanced composite materials[J]. China Plastics Industry,2021,49(3):23-6. [35] YOUSEFPOUR A,HOJJATI M,IMMARIGEON J P. Fusion bonding/welding of thermoplastic composites[J]. Journal of Thermoplastic Composite Materials,2016,17(4):303-41. [36] 朱文凯. 热塑性复合材料激光辅助加热自动铺放过程中温度场研究[D]. 南京:南京航空航天大学,2019. ZHU Wenkai. Study on thermal modelling of the laser-assisted thermoplastic tape placement process[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2019. [37] HOSSEINI S M A,SCHÄKEL M,BARAN I,et al. Non-uniform crystallinity and temperature distribution during adjacent laser-assisted tape winding process of carbon/PA12 pipes[J]. The International Journal of Advanced Manufacturing Technology,2020,111(11-12):3063-82. [38] CLANCY G,PEETERS D,O'HIGGINS R M,et al. In-line variable spreading of carbon fibre/thermoplastic pre-preg tapes for application in automatic tape placement[J]. Materials & Design,2020,194:108967. [39] CLANCY G,PEETERS D,OLIVERI V,et al. A study of the influence of processing parameters on steering of carbon Fibre/PEEK tapes using laser-assisted tape placement[J]. Composites Part B:Engineering,2019,163:243-251. [40] ZHANG C,DUAN Y,XIAO H,et al. The effects of processing parameters on the wedge peel strength of CF/PEEK laminates manufactured using a laser tape placement process[J]. The International Journal of Advanced Manufacturing Technology,2022,120(11-12):7251-7262. [41] PARANDOUSH P,TUCKER L,ZHOU C,et al. Laser assisted additive manufacturing of continuous fiber reinforced thermoplastic composites[J]. Materials & Design,2017,131:186-95. [42] 缪骞. 基于LOM技术薄木激光成型机理与实验研究[D]. 哈尔滨:东北林业大学,2020. MIAO Qian. Research on the mechanism and experimental of thin wood laser forming based on LOM technology[D]. Harbin:Northeast Forestry University,2020. [43] ARANDOUSH P,LI X,CHANG B,et al. Additive manufacturing of continuous carbon fiber reinforced epoxy composite with graphene enhanced interlayer bond toward ultra-high mechanical properties[J]. Polym. Compos.,2022,43(2):934-945. [44] PARANDOUSH P,ZHOU C,LIN D. 3D printing of ultrahigh strength continuous carbon fiber composites[J]. Advanced Engineering Materials,2019,21(2):1800622. [45] PARANDOUSH P,FERNANDO P,ZHANG H,et al. A finishing process via ultrasonic drilling for additively manufactured carbon fiber composites[J]. Rapid Prototyping Journal,2021,27(4):754-768. [46] PARANDOUSH P,DEINES T,LIN D,et al. Mechanical finishing of 3D printed continuous carbon fiber reinforced polymer composites via CNC machining[Z]. Volume 1:Additive Manufacturing; Manufacturing Equipment and Systems; Bio and Sustainable Manufacturing. 2019.10.1115/msec2019-2972 [47] WICKRAMASINGHE S,DO T,TRAN P. FDM-Based 3D printing of polymer and associated composite:A review on mechanical properties,defects and treatments[J]. Polymers (Basel),2020,12(7):1529. [48] 王宗兴. 激光辅助两段式螺杆快速熔融沉积喷头的设计与研究[D]. 青岛:青岛大学,2021. WANG Zongxing. Design and study of laser-assisted two-stage screw rapid fusion deposition nozzle[D]. Qingdao:Qingdao University,2021. [49] MING Y,XIN Z,ZHANG J,et al. Fabrication of continuous glass fiber-reinforced dual-cure epoxy composites via UV-assisted fused deposition modeling[J]. Composites Communications,2020,21:100401. [50] CHEN Y,SHAN Z,YANG X,et al. Influence of preheating temperature and printing speed on interlaminar shear performance of laser-assisted additive manufacturing for CCF/PEEK composites[J]. Polymer Composites,2022,43(6):3412-3425. [51] LUO M,TIAN X,ZHU W,et al. Controllable interlayer shear strength and crystallinity of PEEK components by laser-assisted material extrusion[J]. Journal of Materials Research,2018,33(11):1632-1641. [52] HAN P,TOFANGCHI A,ZHANG S,et al. Effect of in-process laser interface heating on strength isotropy of extrusion-based additively manufactured PEEK[J]. Procedia Manufacturing,2020,48:737-742. [53] RAHMAN M A,ISLAM M Z,GIBBON L,et al. 3D printing of continuous carbon fiber reinforced thermoset composites using UV curable resin[J]. Polymer Composites,2021,42(11):5859-5868. [54] ZHANG Z,LONG Y,YANG Z,et al. An investigation into printing pressure of 3D printed continuous carbon fiber reinforced composites[J]. Composites Part A:Applied Science and Manufacturing,2022,162:107162. [55] MANTHA C,CLARA S. Alleviating torsional forces on fiber-reinforced thermoplastic filament:US,10046511[P]. 2018-08-14. [56] ARMIJO A,DIEGO S,BHEDA H,et al. Systems for additive manufacturing using feedstock shaping:US,10703042[P]. 2020-07-07. [57] KASHIKAR A,VIEW M,MONDESIR W,et al. Methods and apparatus for controlling motion of an articulated robot:US,10857667[P]. 2020-12-08. [58] NICKELS L. Carbon fiber 3D printing propels bike development[J]. Reinforced Plastics,2019,63(2):93-96. [59] 闫春泽,欧阳震,杨磊,等. 连续纤维复材层间增强的机器人辅助激光增材制造系统:中国,CN202310021081.2[P]. 2023-04-18. YAN Chunze,OUYANG Zhen,YANG Lei,et al. Robot-assisted laser additive manufacturing system for continuous fiber composite interlayer reinforcement:China,CN202310021081.2[P]. 2023-04-18. [60] 闫春泽,欧阳震,杨磊,等. 一种机器人辅助激光增材制造系统及其控制方法:中国,CN202310020688.9[P]. 2023-04-28. YAN Chunze,OUYANG Zhen,YANG Lei,et al. A robot-assisted laser additive manufacturing system and its control method:China,CN202310020688.9[P]. 2023-04-28. [61] 闫春泽,聂翔,杨磊,等. 一种基于机器人激光增材制造的增强SiC复合材料制备方法:中国,CN202111663002.5[P]. 2022-04-08. YAN Chunze,NIE Xiang,YANG Lei,et al. A method for preparing reinforced SiC composites based on robotic laser additive manufacturing:China,CN202111663002.5[P]. 2022-04-08. [62] 闫春泽,杨磊,胡殿刚,等. 一种具有剪断和辊压装置的激光增材制造系统:中国,CN202111105807.8[P]. 2022-12-02. YAN Chunze,YANG Lei,HU Diangang,et al. A laser additive manufacturing system with shearing and roller pressing device:China,CN202111105807.8[P]. 2022-12-02. [63] BRENKEN B,BAROCIO E,FAVALORO A,et al. Fused filament fabrication of fiber-reinforced polymers:A review[J]. Additive Manufacturing,2018,21:1-16. [64] URHAL P,WEIGHTMAN A,DIVER C,et al. Robot assisted additive manufacturing:A review[J]. Robotics and Computer-Integrated Manufacturing,2019,59:335-345. [65] HU Z,HUA L,QIN X,et al. Region-based path planning method with all horizontal welding position for robotic curved layer wire and arc additive manufacturing[J]. Robotics and Computer-Integrated Manufacturing,2022,74:102286. [66] SHAH A. Emerging trends in robotic aided additive manufacturing[J]. Materials Today:Proceedings,2022,62:7231-7237. [67] HOSSEINI S M A,BARAN I,VAN DRONGELEN M,et al. On the temperature evolution during continuous laser-assisted tape winding of multiple C/PEEK layers:The effect of roller deformation[J]. International Journal of Material Forming,2020,14(2):203-21. [68] COMER A J,RAY D,OBANDE W O,et al. Mechanical characterisation of carbon fibre-PEEK manufactured by laser-assisted automated-tape-placement and autoclave[J]. Composites Part A:Applied Science and Manufacturing,2015,69:10-20. [69] MIAO Q,DAI Z,MA G,et al. Effect of consolidation force on interlaminar shear strength of CF/PEEK laminates manufactured by laser-assisted forming[J]. Composite Structures,2021,266:113779. [70] WU D,MIAO Q,DAI Z,et al. Effect of voids and crystallinity on the interlaminar shear strength of in-situ manufactured CF/PEEK laminates using repass treatment[J]. Composites Science and Technology,2022,224:109228. [71] ZHAO D,CHEN J,ZHANG H,et al. Effects of processing parameters on the performance of carbon fiber reinforced polyphenylene sulfide laminates manufactured by laser-assisted automated fiber placement[J]. Journal of Composite Materials,2021,56(3):427-439. [72] LUO M,TIAN X,SHANG J,et al. Impregnation and interlayer bonding behaviours of 3D-printed continuous carbon-fiber-reinforced poly-ether-ether-ketone composites[J]. Composites Part A:Applied Science and Manufacturing,2019,121:130-138. [73] NAKAGAWA Y,MORI K-I,MAENO T. 3D printing of carbon fibre-reinforced plastic parts[J]. The International Journal of Advanced Manufacturing Technology,2017,91(5-8):2811-2817. [74] YANG C,TIAN X,LIU T,et al. 3D printing for continuous fiber reinforced thermoplastic composites:Mechanism and performance[J]. Rapid Prototyping Journal,2017,23(1):209-215. [75] TIAN X,LIU T,YANG C,et al. Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites[J]. Composites Part A:Applied Science and Manufacturing,2016,88:198-205. [76] HAO W,LIU Y,ZHOU H,et al. Preparation and characterization of 3D printed continuous carbon fiber reinforced thermosetting composites[J]. Polymer Testing,2018,65:29-34. [77] 王显峰,段少华,唐珊珊,等. 复合材料自动铺放技术在航空航天领域的研究进展[J]. 航空制造技术,2022,65(16):64-77. WANG Xianfeng,DUAN Shaohua,TANG Shanshan,et al. Progress of composite automated placement technology in aviation field[J]. Aeronautical Manufacturing Technology,2022,65(16):64-77. [78] PAPPAS J M,THAKUR A R,LEU M C,et al. A comparative study of pellet-based extrusion deposition of short,long,and continuous carbon fiber-reinforced polymer composites for large-scale additive manufacturing[J]. Journal of Manufacturing Science and Engineering,2021,143(7). [79] AZAROV A V,ANTONOV F K,GOLUBEV M V,et al. Composite 3D printing for the small size unmanned aerial vehicle structure[J]. Composites Part B:Engineering,2019,169:157-63. [80] GOH G D A S,GOH G L. Additive manufacturing in unmanned aerial vehicles (UAVs):Challenges and potential[J]. Aerospace Science and Technology,2017,63:140-151. |
[1] | 董志刚, 王中旺, 冉乙川, 鲍岩, 康仁科. 碳纤维增强陶瓷基复合材料超声振动辅助铣削加工技术的研究进展[J]. 机械工程学报, 2024, 60(9): 26-56. |
[2] | 吴杰, 党嘉强, 李宇罡, 陈东, 安庆龙, 王浩伟, 陈明. 应力超声滚压表面强化机理和抗疲劳性能研究[J]. 机械工程学报, 2024, 60(9): 127-136. |
[3] | 李继成, 陈广俊, 许金凯, 于化东. C/SiC复合材料激光超声复合微切削材料损伤机理与表面质量研究[J]. 机械工程学报, 2024, 60(9): 189-205. |
[4] | 李晗, 章程, 陈杰, 安庆龙, 陈明. SiCf/SiC复合材料激光烧蚀辅助铣削材料去除机理与加工表面质量评价[J]. 机械工程学报, 2024, 60(9): 206-217. |
[5] | 王帅帅, 段振景, 刘吉宇, 李育恒, 王梓恒, 周瑜阳, 刘新, 宋金龙, 孙晶. 冷等离子体耦合微量润滑微铣削CFRP加工性能与机理研究[J]. 机械工程学报, 2024, 60(9): 338-350. |
[6] | 蹇文轩, 丛孟启, 雷卫宁. 基于搅拌摩擦加工技术的镁基复合材料研究进展[J]. 机械工程学报, 2024, 60(8): 48-64. |
[7] | 谢晨阳, 黄鲛, 肖光明, 张贤杰, 王俊彪, 李玉军. 考虑纤维波纹度的单向复合材料代表性体积元生成算法[J]. 机械工程学报, 2024, 60(8): 186-195. |
[8] | 冯勇, 周豪杰, 周智远, 贾晓林, 秦育彦, 徐伟伟. 低频扭转振动辅助螺旋铣孔切削力模型研究[J]. 机械工程学报, 2024, 60(5): 390-402. |
[9] | 宋国荣, 宋协宏, 吕炎, 刘兵, 何存富, 吴斌. 基于超声透射特性的复合材料粘接结构粘接质量预测[J]. 机械工程学报, 2024, 60(4): 230-238. |
[10] | 余海燕, 贺宏伟, 邢萍. 考虑不同刚度退化模式的碳纤维增强复合材料失效模型开发[J]. 机械工程学报, 2024, 60(2): 197-208. |
[11] | 刘小峰, 张天瑀, 韦代平, 柏林, 陈兵奎. 复合材料基体裂纹损伤演化的自适应粒子滤波预测[J]. 机械工程学报, 2024, 60(18): 32-42. |
[12] | 李怡然, 尧军平, 梁超群, 肖鹏, 陈国鑫, 李步炜. 基于三维微观结构的SiC/AZ91D复合材料单轴拉伸过程中裂纹萌生扩展机制[J]. 机械工程学报, 2024, 60(16): 160-170. |
[13] | 姜琳琳, 于天, 李瑶, 焦宗夏, 尚耀星. 复合材料伺服液压缸精准摩擦特性测试方法研究[J]. 机械工程学报, 2024, 60(16): 338-347. |
[14] | 刘明良, 唐颀, 田小永, 刘腾飞, 秦滢杰, 李涤尘. 连续纤维增强加筋圆柱壳回转3D打印工艺及其轴压性能研究[J]. 机械工程学报, 2024, 60(15): 283-290. |
[15] | 任国鑫, 崔泽琴, 丁正祥, 郝晓虎, 王文先, 李卫国. 殷瓦合金激光增材制造研究进展[J]. 机械工程学报, 2024, 60(11): 259-272. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||