机械工程学报 ›› 2023, Vol. 59 ›› Issue (19): 389-410.doi: 10.3901/JME.2023.19.389
杨永强, 蒋仁武, 刘子欣, 周瀚翔, 李阳, 王迪
收稿日期:
2023-04-03
修回日期:
2023-07-05
出版日期:
2023-10-05
发布日期:
2023-12-11
通讯作者:
杨永强(通信作者),男,1961年出生,博士,教授,博士研究生导师。主要研究方向为金属3D打印技术与医学应用、激光增材制造及加工技术、现代焊接技术。E-mail:meyqyang@scut.edu.cn
基金资助:
YANG Yongqiang, JIANG Renwu, LIU Zixin, ZHOU Hanxiang, LI Yang, WANG Di
Received:
2023-04-03
Revised:
2023-07-05
Online:
2023-10-05
Published:
2023-12-11
摘要: 多激光束拼接成形的大尺寸粉末床激光熔融(Laser powder bed fusion,LPBF)技术具有成形效率高、成形尺寸大的特点,可满足航空航天、核电动力等领域大型复杂精密关键构件的制造要求,已成为LPBF技术发展的必然趋势。然而如何保证大尺寸LPBF成形过程的稳定性、工艺可重复性以及成形零件的质量可靠性是该技术的关键挑战。近年来,通过分析优化气流场以获得均匀一致的气流是实现大尺寸LPBF长时间稳定、高质量成形的有效途径。同时,引入在线监控技术能实现成形过程的实时监测、反馈和调节,是掌握工艺调控规律和解决工艺过程不稳定的关键技术手段。因此,综述大尺寸LPBF流场分析及在线监控的研究进展。在流场分析方面,从流道结构优化设计、流场参数及多物理场耦合模拟三个方面系统分析了气流场对飞溅及成形性能的影响。在过程监控方面,系统论述LPBF过程在线监测、数据处理与分析和过程控制方法的研究现状。最后探讨了大尺寸LPBF流场分析及在线监控目前存在的问题及发展趋势。通过结合流场分析及在线监控两大关键方向对大尺寸LPBF的研究进展进行阶段性总结,旨在为推进大尺寸LPBF技术的发展提供重要参考。
中图分类号:
杨永强, 蒋仁武, 刘子欣, 周瀚翔, 李阳, 王迪. 大尺寸粉末床激光熔融流场分析及在线监控研究进展[J]. 机械工程学报, 2023, 59(19): 389-410.
YANG Yongqiang, JIANG Renwu, LIU Zixin, ZHOU Hanxiang, LI Yang, WANG Di. Research Progress of Flow Field Analysis and In-situ Monitoring for Large-scale Laser Powder Bed Fusion[J]. Journal of Mechanical Engineering, 2023, 59(19): 389-410.
[1] KHORASANI A M,GIBSON I,VEETIL J K,et al. A review of technological improvements in laser-based powder bed fusion of metal printers[J]. The International Journal of Advanced Manufacturing Technology,2020,108(1):191-209. [2] DEBROY T,WEI H L,ZUBACK J S,et al. Additive manufacturing of metallic components-Process,structure and properties[J]. Progress in Materials Science,2018,92:112-124. [3] MACDONALD E,WICKER R. Multiprocess 3D printing for increasing component functionality[J]. Science,2016,353(6307):aaf2093. [4] DELGADO J,CIURANA J,RODRIGUEZ C A. Influence of process parameters on part quality and mechanical properties for DMLS and SLM with iron-based materials[J]. International Journal of Advanced Manufacturing Technology,2012,60(5-8):601-610. [5] GONG Haijun,RAFI K,GU Hengfeng,et al. Influence of defects on mechanical properties of Ti-6Al-4V components produced by selective laser melting and electron beam melting[J]. Materials & Design,2015,86:545-554. [6] 尚广庆,梁伟. 金属激光选区熔化(SLM)技术及设备概况[J]. 苏州市职业大学学报,2018,29(3):17-21. SHANG Guagqing,LIANG Wei. Research on the technique and equipment of metal selective laser melting(SLM)[J]. Journal of Suzhou Vocational University,2018,29(3):17-21. [7] 王泽敏,黄文普,曾晓雁. 激光选区熔化成形装备的发展现状与趋势[J]. 精密成形工程,2019,11(4):21-28. WANG Zemin,HUANG Wenpu,ZENG Xiaoyan. Status and prospect of selictive laser melting machines[J]. Journal of Netshape Forming Engineering,2019,11(4):21-28. [8] LIU Zixin,YANG Yongqiang,HAN Changjun,et al. Effects of gas flow parameters on droplet spatter features and dynamics during large-scale laser powder bed fusion[J]. Materials & Design,2023,225:111534. [9] LADEWIG A,SCHLICK G,FISSE M,et al. Influence of the shielding gas flow on the removal of process by-products in the selective laser melting process[J]. Additive Manufacturing,2016,10:1-9. [10] MORAN T P,WARN D H,SOLTANI-TEHRANI A,et al. Spatial inhomogeneity of build defects across the build plate in laser powder bed fusion[J]. Additive Manufacturing,2021,47,10233. [11] FERRAR B,MULLEN L,JONES E,et al. Gas flow effects on selective laser melting (SLM) manufacturing performance[J]. Journal of Materials Processing Technology,2012,212(2):355-364. [12] PHILO A,LAVERY N P,BROWN S G R,et al. Comparison and validation of gas flow models in a powder bed selective laser melting process[C]//Proceedings of the 23rd UK Conference of the Association for Computational Mechanics in Engineering. Swansea:TEXAS,2015,8-10. [13] PHILO A M,SYTCLIFFE C J,SILLARS S,et al. A Study into the effects of gas flow inlet design of the renishaw AM250 laser powder bed fusion machine using computational modelling[C]//Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium. Austin:TEXAS,2017,1203. [14] WANG Weicheng,CHANG Chiayao. Flow analysis of the laminated manufacturing system with laser sintering of metal powder. Part I:Flow uniformity inside the working chamber[J]. The International Journal of Advanced Manufacturing Technology,2017,92:1299-1314. [15] CHEN Xiangxin,TZENG Szjia,WANG Weicheng. Numerical and experimental observations of the flow field inside a selective laser melting (SLM) chamber through computational fluid dynamics (CFD) and particle image velocimetry (PIV)[J]. Powder Technology,2020,362:450-461. [16] LIU Zixin,YANG Yongqiang,WANG Di,et al. Flow field analysis for multilaser powder bed fusion and the influence of gas flow distribution on parts quality[J]. Rapid Prototyping Journal,2022,28(9):1706-1716. [17] SLM Slutions. NGX XII 600[EB OL]. https://www.slm-pushing-the-limits.com/specs. [18] 肖建军,谢洋生. 选区激光熔化金属三维打印设备的风场仿真与优化[J]. 装备机械,2021,176(2):34-39. XIAO Jianjun,XIE Yangsheng. Wind field simulatuion and optimization of 3D metal printing device with SLM[J]. The Magazine on Equipment Machinery,2021,176(2):34-39. [19] 孙宏睿. SLM气氛循环系统风场仿真优化及打印试验对比[J]. 精密制造与自动化,2020,222(2):5-10. SUN Hongrui. Optimization of wind field simulatuion and comparation of printing test of SLM atmosphere circulation system[J]. Precise Manufacturing & Automation,2020,222(2):5-10. [20] YANG Yongqiang,CHEN Ziyu,LIU Zixin,et al. Influence of shielding gas flow consistency on parts quality consistency during large-scale laser powder bed fusion[J]. Optics & Laser Technology,2023,158:108899. [21] ZHANG Xiaobing,CHENG Bo,TUFFILE Charles. Simulation study of the spatter removal process and optimization design of gas flow system in laser powder bed fusion[J]. Additive Manufacturing,2020,32:101049. [22] CHEN Yu,VASTOLA G,ZHANG Yongwei. Optimization of inert gas flow inside laser powder bed fusion chamber with computational fluid dynamics[C]//29th Annual International Solid Freeform Fabrication Symposium-An Additive Manufacturing Conference. Austin:University of Texas at Austin,2018,1931-1939. [23] 梁平华,唐倩,余志强,等. 激光选区熔化的风场仿真与流道结构优化[J]. 中国机械工程,2019,30(7):858-863. LIANG Pinghua,TANG Qian,YU Zhiqiang,et al. Gas field simulation and flow channel structure optimization of SLM[J]. China Mechanical Engineering,2019,30(7):858-863. [24] 谢雪芬,张豪,章诗婷,等. 选区激光熔化气氛保护风场仿真及优化[J]. 制造业自动化,2021,43(12):131-134. XIE Xuefen,ZHANG Hao,ZHANG Shiting,et al. Wind field simulatuion and optimization of shielding gas atmosphere for SLM process[J]. Manufacturing Automation,2021,43(12):131-134. [25] ANDREAS W,BODO H. Apparatus for Producing Work Pieces under Elevated Pressure:Europe,EP2774703A1[P]. 2014-09-10. [26] 贾斯汀·曼拉克,麦肯齐·赖安·雷丁. 增材制造机器的气流系统:中国,CN201880072411.8[P]. 2022-08-12. MANLAC J,READING M R. Air flow system of additive manufacturing machine:China,CN201880072411.8[P]. 2022-08-12. [27] RIVA F,CANAGLIA S. Gas flow within additive manufacturing device:Europe,EP3023228B1[P]. 2018-08-08. [28] 张正文,刘飞,毛忠发,等. 用于选择性激光熔化的烟尘处理装置:中国,CN201510519496.8[P]. 2017-04-05. ZHANG Zhengwen, LIU Fei,MAO Zhongfa,et al. Smoke and dust treatment device for selective laser melting; China,CN201510519496.8[P]. 2017-04-05. [29]赵彦辰. 金属3D打印机吹风装置:中国,CN112024879A[P]. 2020-12-04. ZHAO Yanchen. Metal 3D printer hair dryer:China,CN112024879A[P]. 2020-12-04. [30] 付旺琪,李腾飞,钱波,等. 基于FLUENT的小型激光选区熔化设备气氛保护系统优化设计[J]. 电焊机,2019,49(9):78-83. FU Wanqi,LI Tengfei,QIAN Bo,et al. Optimal design of atmosphere protection system for selective melting device based on FLUENT[J]. Electric Welding Machine,2019,49(9):78-83. [31] 亢志颖,刘杰,郑泽锦,等. 激光选区熔化气氛保护装置的流场分析及优化设计[J]. 机械设计,2022,39(6):100-107. KANG Zhiying,LIU Jie,ZHENG Zhejin,et al. Analysis and optimization design of flow field of the atmosphere-protection equitment's selective laser melting device[J]. Journal of Machine Design,2022,39(6):100-107. [32] WANG X J,ZHANG L C,FANG M H,et al. The effect of atmosphere on the structure and properties of a selective laser melted Al-12Si alloy[J]. Materials Science and Engineering:A,2014,597:370-375. [33] DAI Donghua,GU Dongong. Effect of metal vaporization behavior on keyhole-mode surface morphology of selective laser melted composites using different protective atmospheres[J]. Applied Surface Science,2015,355:310-319. [34] RALESH C S,PRIYANKA N,JAYAGANTHAN,et al. Effect of build atmosphere on the mechanical properties of AlSi10Mg produced by selective laser melting[J]. Materials Today:Proceedings,2018,5(9):17231-17238. [35] PAUZON C,FORET P,HRYHA E,et al. Argon-helium mixtures as Laser-Powder Bed Fusion atmospheres:Towards increased build rate of Ti-6Al-4V[J]. Journal of Materials Processing Technology,2020,279:116555. [36] TRAORE S,SCHNEIDER M,KOUTIRI I et al. Influence of gas atmosphere (Ar or He) on the laser powder bed fusion of a Ni-based alloy[J]. Journal of Materials Processing Technology,Elsevier,2021,288:116851. [37] TRAORE S,KOUTIRI I,SCHNEIDER M,et al. Influence of gaseous environment on the properties of Inconel 625 L-PBF parts[J]. Journal of Manufacturing Processes,2022,84:1492-1506. [38] REIJONEN J,REVUELTA A,RIIPINEN T,et al. On the effect of shielding gas flow on porosity and melt pool geometry in laser powder bed fusion additive manufacturing[J]. Additive Manufacturing,2020,32:101030. [39] CHEN Yanzhe,WEN Peng,VOSHAGE M,et al. Laser additive manufacturing of Zn metal parts for biodegradable implants:Effect of gas flow on evaporation and formation quality[J]. Journal of Laser Applications,2019,31:022304. [40] WEN Peng,QIN Yu,CHEN Yanzhe,et al. Laser additive manufacturing of Zn porous scaffolds:Shielding gas flow,surface quality and densification[J]. Journal of Materials Science and Technology,2019,35(2):368-376. [41] ANWAR A B,PHAM Q C. Selective laser melting of AlSi10Mg:Effects of scan direction,part placement and inert gas flow velocity on tensile strength[J]. Journal of Materials Processing Technology,2017,240:388-396. [42] YANG G,XIE Y,ZHAO S,et al. Quality control:Internal defects formation mechanism of selective laser melting based on laser-powder-melt pool interaction:A review[J]. Chinese Journal of Mechanical Engineering:Additive Manufacturing Frontiers,2022:100037. [43] ANWAR A B,Ibrahim I H,Pham Q C. Spatter transport by inert gas flow in selective laser melting:A simulation study[J]. Powder technology,2019,352:103-116. [44] ANWAR A B,Pham Q C. Study of the spatter distribution on the powder bed during selective laser melting[J]. Additive Manufacturing,2018,22:86-97. [45] BIDARE P,BITHARAS I,WARD R M,et al. Fluid and particle dynamics in laser powder bed fusion[J]. Acta Materialia,2018,142:107-120. [46] CHEN H,YAN W. Spattering and denudation in laser powder bed fusion process:Multiphase flow modelling[J]. Acta Materialia,2020,196:154-167. [47] LI X,ZHAO C,SUN T,et al. Revealing transient powder-gas interaction in laser powder bed fusion process through multi-physics modeling and high-speed synchrotron x-ray imaging[J]. Additive Manufacturing,2020,35:101362. [48] LI Xuxiao,GUO Qilin,Chen Lianyi,et al. Quantitative investigation of gas flow,powder-gas interaction,and powder behavior under different ambient pressure levels in laser powder bed fusion[J]. International Journal of Machine Tools and Manufacture,2021,170:103797. [49] KLESZCZYNSKI S,ZUR JACOBSMÜHLEN J,Reinarz B,et al. Improving process stability of laser beam melting systems[C]//Fraunhofer Di⁃rect Digital Manufacturing Conference. Berlin,2014,1⁃6. [50] SEITA M. A high-resolution and large field-of-view scanner for in-line characterization of powder bed defects during additive manufacturing[J]. Materials & Design,2019,164:107562. [51] 张鹏. 基于视觉的激光选区熔化成形铺粉质量在线监控系统研究[D]. 武汉:华中科技大学,2017. ZHANG Peng. Research of a motoring system of deposition quality in selective laser melting based on machine vision[D]. Wuhan:Huazhong University of Science&Technology,2017. [52] 黄阿童,姚山. 基于图像处理的增材制造铺粉缺陷自动检测[J]. 工业控制计算机,2020,33(10):7-10. HUANG Atong,YAO Shan. Automated dection of powder spreading defects in additive manufacturing based on image processing[J]. Industrial Control Computer,2020,33(10):7-10. [53] LAND II W S,Zhang Bin,ZIEGERT J,et al. In-situ metrology system for laser powder bed fusion additive process[J]. Procedia Manufacturing,2015,1:393-403. [54] 赵蒙蒙,刘丰,张肖男,等. 基于表面轮廓参数评定的铺粉质量研究[J]. 铸造技术,2018,39(10):2296-2299. ZHAO Mengmeng,LIU Feng,ZHANG Xiaonan,et al. Study on powder laying quality based on the evaluation of surface profile parameters[J]. Foundry Technology,2018,39(10):2296-2299. [55] ZHANG Bin,ZIEGERT J,DAVIES A.In situ surface metrology of laser powder bed fusion processes using fringe projection[C]//Proc of Joint Special Interest Group Meeting between Euspen and ASPE. Charlotte:Curran Associates Inc,2016. [56] NEEF A,SEYDA V,HERZOG D,et al. Low coherence interferometry in selective laser melting[J]. Physics Procedia,2014,56:82-89. [57] GRONDEL S,DELEBARRE C,ASSAAD J,et al. Fatigue crack monitoring of riveted aluminium strap joints by Lamb wave analysis and acoustic emission measurement techniques[J]. NDT & E International,2002,35(3):137-146. [58] YE Dongsen,HONG Geoksoon,ZHANG Yingjie,et al. Defect detection in selective laser melting technology by acoustic signals with deep belief networks[J]. The International Journal of Advanced Manufacturing Technology,2018,96:2791-2801. [59] TAKUMA M,HISADA S,SAITOH K,et al. Acoustic emission measurement by fiber Bragg grating glued to cylindrical sensor holder[J]. Advances in Materials Science and Engineering,2014,2014. [60] SHEVCHILK S A,KENEL C,LEINENBACH C,et al. Acoustic emission for in situ quality monitoring in additive manufacturing using spectral convolutional neural networks[J]. Additive Manufacturing,2018,21:598-604. [61] TEMPELMAN J R,WACHTOR A J,FLYMN E B,et al. Detection of keyhole pore formations in laser powder-bed fusion using acoustic process monitoring measurements[J]. Additive Manufacturing,2022,55:102735. [62] WU Haixi,YU Zhonghua,WANG Yan. A new approach for online monitoring of additive manufacturing based on acoustic emission[C]//International Manufacturing Science and Engineering Conference. Blacksburg:American Society of Mechanical Engineers,2016,49910:V003T08A013. [63] LI Zheng,LI Hao,YIN Jie,et al. A review of spatter in laser powder bed fusion additive manufacturing:In situ detection,generation,effects,and countermeasures[J]. Micromachines,2022,13(8):1366. [64] LIU Yang,YANG Yongqiang,MAI Shuzhen,et al. Investigation into spatter behavior during selective laser melting of AISI 316L stainless steel powder[J]. Materials & Design,2015,87:797-806. [65] WANG Di,WU Shibiao,FU Fan,et al. Mechanisms and characteristics of spatter generation in SLM processing and its effect on the properties[J]. Materials & Design,2017,117:121-130. [66] WANG Di,YE Guangzhao,DOU Wenhao,et al. Influence of spatter particles contamination on densification behavior and tensile properties of CoCrW manufactured by selective laser melting[J]. Optics & Laser Technology,2020,121:105678. [67] WANG Di,DOU Wenhao,QU Yuanhui,et al. Characteristics of droplet spatter behavior and process-correlated mapping model in laser powder bed fusion[J]. Journal of Materials Research and Technology,2021,12:1051-1064. [68] ZHANG Yingjie,FUH J Y H,YE Dongsen,et al. In-situ monitoring of laser-based PBF via off-axis vision and image processing approaches[J]. Additive Manufacturing,2019,25:263-274. [69] LOTT P,SCHLEIFENBAUM H,MEINERS W,et al. Design of an optical system for the in situ process monitoring of selective laser melting (SLM)[J]. Physics Procedia,2011,12:683-690. [70] BERUMEN S,BECHMANN F,LINDNER S,et al. Quality control of laser-and powder bed-based Additive Manufacturing (AM) technologies[J]. Physics Procedia,2010,5:617-622. [71] GOOSSENS L R,VAN H B. A virtual sensing approach for monitoring melt-pool dimensions using high speed coaxial imaging during laser powder bed fusion of metals[J]. Additive Manufacturing,2021,40:101923. [72] DUNBAR A J,NASSARR A R. Assessment of optical emission analysis for in-process monitoring of powder bed fusion additive manufacturing[J]. Virtual and Physical Prototyping,2018,13(1):14-19. [73] LOUGH C S,ESCANO L I,QU M,et al. In-Situ Optical Emission Spectroscopy During SLM of 304L Stainless Steel[J]. 2018. [74] YADROITSEV I,KRAKHMALEV P,YADROITSAVA I. Selective laser melting of Ti6Al4V alloy for biomedical applications:Temperature monitoring and microstructural evolution[J]. Journal of Alloys and Compounds,2014,583:404-409. [75] HOOPER P A. Melt pool temperature and cooling rates in laser powder bed fusion[J]. Additive Manufacturing,2018,22:548-559. [76] EGAN D S,JONES K,DPWLING D P. Selective laser melting of Ti-6Al-4V:Comparing μCT with in-situ process monitoring data[J]. CIRP Journal of Manufacturing Science and Technology,2020,31:91-98. [77] BI Guijun,SCHUMANN B,GASSER A,et al. Development and qualification of a novel laser-cladding head with integrated sensors[J]. International Journal of Machine Tools and Manufacture,2007,47(3-4):555-561. [78] 袁景光,李宇,刘京南,等. 选区激光熔化金属成型熔池温度的在线检测[J]. 中国激光,2020,47(3):158-166. YUAN Jingguang,LI Yu,LIU Jingnan,et al. Online detection of molten pool temperature during metal forming based on selective laser melting[J]. Chinese Journal of Lasers,2020,47(3):158-166. [79] EVERTON S K,HIRSCH M,STRAVROULAKIS P,et al. Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing[J]. Materials & Design,2016,95:431-445. [80] ZHANG Wenyou,TONG Mingming,HARRISON N M. Scanning strategies effect on temperature,residual stress and deformation by multi-laser beam powder bed fusion manufacturing[J]. Additive Manufacturing,2020,36:101507. [81] WEI Kaiwen,LI Fangzhi,HUANG Gao,et al. Multi-laser powder bed fusion of Ti-6Al-4V alloy:defect,microstructure,and mechanical property of overlap region[J]. Materials Science and Engineering:A,2021,802:140644. [82] LI Zhonghua,KUAI Zezhou,BAI Peikang,et al. Microstructure and tensile properties of AlSi10Mg alloy manufactured by multi-laser beam selective laser melting (SLM)[J]. Metals,2019,9(12):1337. [83] MASOOMI M,THOMPSON S M,SHAMSAEI N. Quality part production via multi-laser additive manufacturing[J]. Manufacturing Letters,2017,13:15-20. [84] WONG H,DAWSON K,RAVI G A,et al. Multi-laser powder bed fusion benchmarking-Initial trials with Inconel 625[J]. The International Journal of Advanced Manufacturing Technology,2019,105(7):2891-2906. [85] XIANG Yu,ZHANG Shuzhe,WEI Zhengying,et al. Forming and defect analysis for single track scanning in selective laser melting of Ti6Al4V[J]. Applied Physics A,2018,124:1-12. [86] YAN Wentao,GE Wenjun,QIAN Ya,et al. Multi-physics modeling of single/multiple-track defect mechanisms in electron beam selective melting[J]. Acta Materialia,2017,134:324-333. [87] SCHNELL N,SCHOELER M,WITT G,et al. Experimental and numerical thermal analysis of the laser powder bed fusion process using in situ temperature measurements of geometric primitives[J]. Materials & Design,2021,209:109946. [88] KHAIRALLAH S A,ANDERSON A T,RUBENCHILK A,et al. Laser powder-bed fusion additive manufacturing:Physics of complex melt flow and formation mechanisms of pores,spatter,and denudation zones[J]. Acta Materialia,2016,108:36-45. [89] PAVLOV M,DOUBENSKAIA M,SMUROV I. Pyrometric analysis of thermal processes in SLM technology[J]. Physics Procedia,2010,5:523-531. [90] MAHATO V,OBEIDI M A,BRABAZON D,et al. An evaluation of classification methods for 3d printing time-series data[J]. IFAC-PapersOnLine,2020,53(2):8211-8216. [91] FORIEN J B,CALTA N P,DEPOND P J,et al. Detecting keyhole pore defects and monitoring process signatures during laser powder bed fusion:A correlation between in situ pyrometry and ex situ X-ray radiography[J]. Additive Manufacturing,2020,35:101336. [92] GRASSO M,DEMIR A G,PREVITALI B,et al. In situ monitoring of selective laser melting of zinc powder via infrared imaging of the process plume[J]. Robotics and Computer-Integrated Manufacturing,2018,49:229-239. [93] HEIGEL J C,LANE B M. Measurement of the melt pool length during single scan tracks in a commercial laserpowder bed fusion process[J]. Journal of Manufacturing Science and Engineering,2018,140(5):051012. [94] ZHENG Liping,ZHANG Qi,CAO Hongbo,et al. Melt pool boundary extraction and its width prediction from infrared images in selective laser melting[J]. Materials & Design,2019,183:108110. [95] GUTKMECHT K,LOOTS M,SOMMERTHUBER R,et al. Mutual comparison of acoustic,pyrometric and thermographic laser powder bed fusion monitoring[J]. Materials & Design,2021,210:110036. [96] KATAYAMA S,MIZUTANI M,MATSUNAWA A. Development of porosity prevention procedures during laser welding[C]//First International Symposium on High-power Laser Macroprocessing. SPIE,2003,4831:281-288. [97] CUNNINGHAM R,ZHAO Cang,PARAB N,et al. Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed x-ray imaging[J]. Science,2019,363(6429):849-852. [98] GUO Qilin,ZHAO Cang,QU Minglei,et al. In-situ characterization and quantification of melt pool variation under constant input energy density in laser powder bed fusion additive manufacturing process[J]. Additive Manufacturing,2019,28:600-609. [99] ZHAO Cang,FEZZAA K,CUNNINGHAM R W,et al. Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction[J]. Scientific reports,2017,7(1):3602. [100] ZHAO Cang,PARAB N D,LI Xuxiao et al. Critical instability at moving keyhole tip generates porosity in laser melting[J]. Science,2020,370(6520):1080-1086. [101] RICHTER B,BLANKE N,WERNER C,et al. High-speed X-ray investigation of melt dynamics during continuous-wave laser remelting of selective laser melted Co-Cr alloy[J]. CIRP Annals,2019,68(1):229-232. [102] 曹龙超,周奇,韩远飞,等. 激光选区熔化增材制造缺陷智能监测与过程控制综述[J]. 航空学报,2021,42(10):199-233. CAO Longchao,ZHOU Qi,HAN Yuanfei,et al. Review on intelligent monitoring of defects and process control of celective laser melting addtive manufacturing[J]. Acta Aeronautica et Astronautica Sinica,2021,42(10):199-233. [103] GOBERT C,REUTZEL E W,PETRICH J,et al. Application of supervised machine learning for defect detection during metallic powder bed fusion additive manufacturing using high resolution imaging[J]. Additive Manufacturing,2018,21:517-528. [104] TAHERKHANI K,ERO O,LIRAVI F,et al. On the application of in-situ monitoring systems and machine learning algorithms for developing quality assurance platforms in laser powder bed fusion:A review[J]. Journal of Manufacturing Processes,2023,99:848-897. [105] TAPIA G,KHAIRALLAH S,MATTEWS M,et al. Gaussian process-based surrogate modeling framework for process planning in laser powder-bed fusion additive manufacturing of 316L stainless steel[J]. The International Journal of Advanced Manufacturing Technology,2018,94:3591-3603. [106] YUAN B,GUSS G M,WILSON A C,et al. Machine-learning-based monitoring of laser powder bed fusion[J]. Advanced Materials Technologies,2018,3(12):1800136. [107] O'LOUGHLIN S,DUTTON B,SEMAJ G,et al. Towards in-process prediction of voids in laser powder bed fusion[J]. JOM,2021,73:3240-3249. [108] SCIME L,BEUTH J. Anomaly detection and classification in a laser powder bed additive manufacturing process using a trained computer vision algorithm[J]. Additive Manufacturing,2018,19:114-126. [109] FATHIZADAN S,JU F,LU Y. Deep representation learning for process variation management in laser powder bed fusion[J]. Additive Manufacturing,2021,42:101961. [110] TATHERKJANI K,EISCHER C,TOYSHERKANI E. An unsupervised machine learning algorithm for in-situ defect-detection in laser powder-bed fusion[J]. Journal of Manufacturing Processes,2022,81:476-489. [111] SCIME L,BEUTH J. Using machine learning to identify in-situ melt pool signatures indicative of flaw formation in a laser powder bed fusion additive manufacturing process[J]. Additive Manufacturing,2019,25:151-165. [112] OKARO I A,Jayasinghe S,Sutcliffe C,et al. Automatic fault detection for laser powder-bed fusion using semi-supervised machine learning[J]. Additive Manufacturing,2019,27:42-53. [113] KRUTH J P,MERCELICSE P,VAN V J,et al. Virtual and Rapid Manufacturing[M]. Boca Raton:CRC Press,2007. [114] RENKEN V,VON F A,SCHUNEMANN K,et al. In-process closed-loop control for stabilising the melt pool temperature in selective laser melting[J]. Progress in Additive Manufacturing,2019,4:411-421. [115] HUANG Xiaokang,TIAN Xiaoyong,ZHONG Qi,et al. Real-time process control of powder bed fusion by monitoring dynamic temperature field[J]. Advances in Manufacturing,2020,8:380-391. [116] PURTONEN T,KALLIOSAARI A,SALMINEN A. Monitoring and adaptive control of laser processes[J]. Physics Procedia,2014,56:1218-1231. |
[1] | 贾康, 苏文军, 党锦龙, 石卫江, 刘志刚, 洪军. 一种基于脉冲光时钟同步的自动旋转激光经纬仪系统[J]. 机械工程学报, 2023, 59(10): 1-8. |
[2] | 翟富刚, 李超, 叶子, 谭昌宇, 陈誉. 内置过滤器边界对小型化液压油箱内流场的影响[J]. 机械工程学报, 2021, 57(24): 114-122. |
[3] | 黄小康, 田小永, 田晓阳, 曹毅, 同治强, 李涤尘. 基于分区域控制的大型SLS装备预热策略研究[J]. 机械工程学报, 2018, 54(7): 160-166. |
[4] | 王政, 李田, 张继业. 不同类型横风下高速列车气动性能研究[J]. 机械工程学报, 2018, 54(4): 203-211. |
[5] | 张晋, 龚学知, 胡建军, 权凌霄, 哈良, 孔祥东. 轴向柱塞泵配流分析用湍流模型探析[J]. 机械工程学报, 2018, 54(18): 204-211. |
[6] | 王海同, 李铁民, 王立平, 李逢春. 大尺寸球轴承打滑分析及其应用[J]. 机械工程学报, 2015, 51(11): 41-47. |
[7] | 林晓辉;郭隐彪;王振忠;许乔. 大尺寸轴对称非球面磨削精度建模和分析[J]. , 2013, 49(17): 65-72. |
[8] | 劳达宝;杨学友;邾继贵;杨凌辉. 网络式激光扫描空间定位系统标定技术研究[J]. , 2011, 47(6): 1-6. |
[9] | 夏冬生;张会臣;于彦. 柴油机气缸套冷却水空化流的三维数值模拟[J]. , 2011, 47(22): 167-173. |
[10] | 雷雨龙;葛安林;田华;盛培德. 基于内流场分析的液力变矩器改型设计[J]. , 2006, 42(2): 125-128. |
[11] | 徐尚龙;李涤尘;卢秉恒. 基于细胞沉积的人工骨微管设计及三维流场分析[J]. , 2005, 41(4): 154-157. |
[12] | 王民;费仁元. 基于电流变材料的切削颤振在线监控技术研究[J]. , 2002, 38(12): 93-97. |
[13] | 任静;张伟;吴玉林;杨建明;张启德. 基于CFD流态分析技术的水力机组转轮改型研究[J]. , 2000, 36(4): 86-90. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||