[1] SZMYTKA F, CHARKALUK E, CONSTANTINESCU A. Probabilistic low cycle fatigue criterion for nodular cast-irons[J]. Int. J. Fatigue, 2020, 139:105701. [2] TELLOA L, CASTEJONA L, MALON H. Development of a fatigue life prediction methodology for welded steel semi-trailer components based on a new criterion[J]. Engineering Failure Analysis, 2020, 108:104268. [3] KAMALA M, RAHMAN M M. Advances in fatigue life modeling:A review[J]. Renewable and Sustainable Energy Reviews, 2018, 82:940-949. [4] NOEL M. Probabilistic fatigue life modeling of FRP composites for construction[J]. Construction and Building Materials, 2019, 206:279-286. [5] LAN C, BAI N, YANG H T, et al. Weibull modeling of the fatigue life for steel rebar considering corrosion effects[J]. Int. J. Fatigue, 2018, 111:134-143. [6] LAN C M, XU Y, LIU C P, et al. Fatigue life prediction for parallel-wire stay cables considering corrosion effects[J]. Int. J. Fatigue, 2018, 114:81-91. [7] 谢里阳,刘建中,吴宁祥,等. 风电装备传动系统及零部件疲劳可靠性评估方法[J]. 机械工程学报, 2014, 50(11):1-8. XIE Liyang, LIU Jianzhong, WU Ningxiang, et al. Fatigue reliability evaluation method for gearbox component and system of wind turbine[J]. Journal of Mechanical Engineering, 2014, 50(11):1-8. [8] ROUX C, LORANG X, MAITOURNAM H, et al. Fatigue design of railway wheels:A probabilistic approach[J]. Fatigue and Fracture of Engineering Materials and Structures, 2014, 37:1136-1145. [9] YUE P, MA J, ZHOU C, et al. A fatigue damage accumulation model for reliability analysis of engine components under combined cycle loadings[J]. Fatigue & Fracture of Engineering Materials & Structures, 2020, 43:1880-1892. [10] GAO J, AN Z. A new probability model of residual strength of material based on interference theory[J]. Int. J. Fatigue, 2019, 118:202-208. [11] ZHU S P, LIU Q, LEI Q, et al. Probabilistic fatigue life prediction and reliability assessment of a high pressure turbine disc considering load variations[J]. International Journal of Damage Mechanics, 2018, 27(10):1569-1588. [12] PETRYNA Y S, PFANNER D, STANGENBERG F, et al. Reliability of reinforced concrete structures under fatigue[J]. Reliability Engineering and System Safety, 2002, 77:253-261. [13] ZHANG D, HONG J, MA Y, et al. A probability method for prediction on high cycle fatigue of blades caused by aerodynamic loads[J]. Advances in Engineering Software, 2011, 42:1059-1073. [14] SONG L K, BAI G C, FEI C W. Reliability-based fatigue life prediction for complex structure with time-varying surrogate modeling[J]. Advances in Materials Sci. and Eng., 2018, 2018:3469465. [15] AHMAD H W, HWANG J H, JAVED K, et al. Probabilistic fatigue life prediction of dissimilar material weld using accelerated life method and neural network approach[J]. Computation, 2019, 7(1):10. [16] SONGA L K, BAIA G C, FEI C W. Probabilistic LCF life assessment for turbine discs with DC strategy-based wavelet neural network regression[J]. Int. J. Fatigue, 2019, 119:204-219. [17] KLIMAN V. Fatigue life estimation under random loading using the energy criterion[J]. Int. J. Fatigue, 1985, 7(1):39-44. [18] LIANG J S, DING Z D, LI J. A probabilistic analyzed method for concrete fatigue life[J]. Probabilistic Engineering Mechanics, 2017, 49:13-21. [19] LIAO D, ZHU S P, KESHTEGAR B, et al. Probabilistic framework for fatigue life assessment of notched components under size effects[J]. Int. J. Mechanical Sciences, 2020, 181:105685. [20] XU Y Z. Fatigue reliability evaluation using probability density evolution method[J]. Probabilistic Engineering Mechanics, 2015, 42:1-6. [21] FU B, ZHAO J, LI B. Fatigue reliability analysis of wind turbine tower under random wind load[J]. Structural Safety, 2020, 87:101982. [22] ZHU S P, HUANG H Z, LI Y F, et al. Probabilistic modeling of damage accumulation for time-dependent fatigue reliability analysis of railway axle steels[J]. Proc. IMechE Part F:J Rail and Rapid Transit, 2015, 229(1):23-33. [23] 谢里阳,任俊刚,吴宁祥,等. 复杂结构部件概率疲劳寿命预 测方法与模 型[J]. 航空学 报, 2015, 36:2688-2695. XIE Liyang, REN Jungang, WU Ningxiang, et al. Probabilistic fatigue life prediction method and modeling for complex structural parts[J]. Chinese Journal of Aeronautics, 2015, 36:2688-2695. [24] WIRSCHING P H, ASCE M. Fatigue reliability for offshore structures[J]. J. Struct. Eng., 1985, 8:2340-2356. [25] LOSBERG I, SIGRUDSSON G, FJELDSTAD A, et al. Probabilistic methods for planning of inspection for fatigue cracks in offshore structures[J]. Marine Structures, 2016, 46:167-192. [26] KARADENIZ H. Uncertainty modeling in the fatigue reliability calculation of offshore structures[J]. Reliability Engineering and System Safety, 2001, 74:323-335. [27] D'ANGELO L, NUSSBAUMER A. Reliability based fatigue assessment of existing motorway bridge[J]. Structural Safety, 2015, 57:35-42. [28] MANSOUR A E, WIRSCHING P H. Sensitivity factors and their application to marine structures[J]. Marine Structures, 1995, 8:229-255. [29] RICE J A. Mathematical statistics and data analysis[M]. 3rd ed. Singapore:Cengage Learning, 2007. [30] XIE L Y, BAI E J, QIAN W X, et al. Time-dependent series system reliability analysis method and application to gear transmission systems[J]. Int. J. Reliability, Quality and Safety Engineering, 2017, 24:1750014. |