[1] 李世玉. 压力容器设计工程师培训教程[M]. 北京:新华出版社, 2005. LI Shiyu. Training course for pressure vessel design engineer[M]. Beijing:Xinhua Press, 2005. [2] 李志义, 喻健良. 爆破片技术及应用[M]. 北京:化学工业出版社, 2006. LI Zhiyi, YU Jianliang. Bursting disc device technology an application[M]. Beijing:Chemical Industry Press, 2006. [3] 顾雪铭, 吴全龙, 杨秀霞. 正拱环向开缝型爆破片的爆破性能[J]. 华东理工大学学报, 2004(1):99-102. GU Xueming, WU Quanlong, YANG Xiuxia. Bursting mechanism of domed annular-slotted bursting discss[J]. Journal of East China University of Science and Technology, 2004(1):99-102. [4] 闫兴清, 喻健良, 李岳, 等. 爆破片失效影响因素分析及失效案例[J]. 压力容器, 2018, 35(8):52-57. YAN Xingqing, YU Jianliang, LI Yue, et al. Analysis of influence factors and failure examples of bursting discs[J]. Pressure Vessel Technology, 2018, 35(8):52-57. [5] Jeong J Y, Lee J, Yeom S, et al. A study on the grooving process of a cross-scored rupture disc[J]. International Journal of Precision Engineering and Manufacturing, 2012, 13(2):219-227. [6] 徐锋, 刘应华, 杨超. 升压速率对正拱形爆破片爆破压力影响的试验研究[J]. 压力容器, 2021, 38(1):9-14. XU Feng, LIU Yinghua, YANG Chao. Experiment study on effect of pressure rise rate on bursting pressure of domed bursting disc device[J]. Pressure Vessel Technology, 2021, 38(1):9-14. [7] 李岳, 闫兴清, 喻健良, 等. 升压速率对反拱带槽型爆破片爆破压力影响的试验研究[J]. 压力容器, 2020, 37(1):8-13. LI Yue, YAN Xingqing, YU Jianliang, et al. An experimental study for the effects of pressure rise rate on bursting pressure of reverse domed scored bursting disc[J]. Pressure Vessel Technology, 2020, 37(1):8-13. [8] 喻健良, 曾方驰, 闫兴清, 等. 动态超压工况下正拱开缝型爆破片的爆破性能研究[J]. 压力容器, 2020, 37(6):9-14. YU Jianliang, ZENG Fangchi, YAN Xingqing, et al. Study on bursting performance of positive-arch slotted rupture disc under dynamic overpressure conditions[J]. Pressure Vessel Technology, 2020, 37(6):9-14. [9] 宋仁伯, 项建英, 侯东坡. 316L不锈钢冷变形加工硬化机制及组织特征[J]. 北京科技大学学报, 2013, 35(1):55-60. SONG Renbo, XIANG Jianying, HOU Dongpo. Microstructure characteristics and work-hardening mechanism of 316L austenitic stainless steel during cold deformation[J]. Journal of University of Science and Technology Beijing, 2013, 35(1):55-60. [10] 项建英, 宋仁伯, 侯东坡, 等. 316L不锈钢加工硬化机制及孪生行为[J]. 材料科学与工艺, 2011, 19(4):128-133. XIANG Jianying, SONG Renbo, HOU Dongpo, et al. Mechanism of work hardening and twinning for 316L stainless steel[J]. Materials Science and Technology, 2011, 19(4):128-133. [11] Mangonon P L, Thomas G. The martensite phases in 304 stainless steel[J]. Metallurgical Transactions, 1970(6):1577-1586. [12] SEETHARAMAN V, KRISHNAN R. Influence of the martensitic transformation on the deformation behaviour of an AISI 316 stainless steel at low temperatures[J]. Journal of Materials Science, 1981, 16(1):523-530. [13] Das A, Sivaprasad S, Ghosh M, et al. Morphologies and characteristics of deformation induced martensite during tensile deformation of 304 LN stainless steel[J]. Materials Science and Engineering:A, 2008, (1-2):283-286. [14] 李会鹏, 熊毅, 路妍, 等. 应变速率对低温拉伸316LN奥氏体不锈钢微观组织和力学性能的影响[J]. 材料研究学报, 2018, 32(2):105-111. LI Huipeng, XIONG Yi, LU Yan, et al. Effect of strain rate on microstructure evolution and mechanical property of 316LN austenitic stainless steel at cryogenic temperature[J]. Chinese Journal of Materials Research, 2018, 32(2):105-111. [15] 刘伟, 李志斌, 王翔, 等. 应变速率对奥氏体不锈钢应变诱发α'-马氏体转变和力学行为的影响[J]. 金属学报, 2009, 45(3):285-291. LIU Wei, LI Zhibin, Wang Xiang, et al. Effect of strain rate on strain induced α'-Martensite transformation and mechanical response of austenitic stainless steels[J]. Acta Metallurgica Sinica, 2009, 45(3):285-291. [16] LEBEDEV A A, KOSARCHUK V V. Influence of phase transformations on the mechanical properties of austenitic stainless steels[J]. International Journal of Plasticity, 2000, 16(7):749-767. [17] BRESSANELLI J P, Moskowitz A. Effects of strain rate, temperature and composition on tensile properties of metastable austenitic stainless steels[J]. ASM-Trans., 1966, 59(2):223-239. [18] HECKER S S, STOUT M G, STAUDHAMMER K P, et al. Effects of strain state and strain rate on deformation-induced transformation in 304 stainless steel:Part I. Magnetic measurements and mechanical behavior[J]. Metallurgical and Materials Transactions A, 1982, 13(4):619-626. [19] MURR L E, STAUDHAMMER K P, HECKER S S. Effects of strain state and strain rate on deformation-induced transformation in 304 stainless steel:Part Ⅱ. Microstructural study[J]. Metallurgical and Materials Transactions A, 1982, 13(4):627-635. [20] XU D M, WAN X L, YU J X, et al. Effect of strain rate on microstructures and mechanical properties of Fe-18Cr-8Ni steel[J]. Materials Science & Technology, 2019(2):195-203. [21] TALONEN J, NENONEN P, PAPE G, et al. Effect of strain rate on the strain-induced γ→α'-Martensite transformation and mechanical properties of austenitic stainless steels[J]. Metallurgical and Materials Transactions A, 2005(36A):421-432. |