• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2022, Vol. 58 ›› Issue (15): 55-62.doi: 10.3901/JME.2022.15.055

• 特邀专栏:先进磨粒加工技术 • 上一篇    下一篇

扫码分享

镍基高温合金深切磨削接触区内流体对流换热系数分布反推方法研究

金滩1,2, 马鑫3, 胡浩1,2, 曲美娜1,2, 尚振涛1,2   

  1. 1. 湖南大学机械与运载工程学院 长沙 410082;
    2. 湖南大学国家高效磨削工程技术研究中心 长沙 410082;
    3. 中国航发南方工业有限公司 株洲 412008
  • 收稿日期:2021-07-15 修回日期:2022-01-11 发布日期:2022-10-13
  • 作者简介:金滩,男,1962年出生,教授,博士研究生导师。主要研究方向为高效磨削工艺理论与工艺技术、磨削传热分析。E-mail:tjin@hnu.edu.cn;胡浩,男,1997年出生,硕士研究生。主要研究方向为高温合金精密螺纹成形磨削技术与磨削温度场建模分析。E-mail:18438606355@163.com
  • 基金资助:
    中国航发集团产学研合作资助项目(HFZL2019CXY007)。

Inverse Approach to Derive the Distribution of Convection Heat Transfer Coefficient of Grinding Fluid within Grinding Zone for Deep Grinding of Nickel Based Super Alloy

JIN Tan1,2, MA Xin3, HU Hao1,2, QU Meina1,2, SHANG Zhentao1,2   

  1. 1. College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082;
    2. National High-efficiency Grinding Engineering Technology Research Center, Hunan University, Changsha 410082;
    3. AECC South Industry Company Ltd., Zhuzhou 412008
  • Received:2021-07-15 Revised:2022-01-11 Published:2022-10-13

摘要: 采用多孔金属结合剂CBN砂轮,对镍基高温合金开展了缓进深切磨削相关理论与试验研究。基于实测磨削温度信号和圆弧接触移动热源模型,建立了深切磨削条件下磨削区内流体对流换热系数(Convection heat transfer coefficient,CHTC)分布的反推计算方法。在缓进深切模式下,磨削区内对流换热系数分布形态与传统浅磨明显不同。磨削区内的对流换热系数分布分为两段曲线,在磨削区前端的小区间,磨削液对流换热系数有一个明显的上升段,在主对流换热区,对流换热系数变化相对平缓。接触弧长和进给速度的变化对主对流换热区的对流换热系数分布影响较小,磨削速度是影响对流换热系数的主要因素。在磨削速度28~42 m/s范围内,宏观对流换热系数为23 000~25 000 W/m2·K,磨削速度提高至50 m/s,对流换热系数有所降低,为16 000~19 000 W/m2·K。该研究表明,采用多孔金属结合剂砂轮和油基磨削液,可在磨削弧长较大的条件下实现对磨削区的有效对流换热。

关键词: 镍基高温合金, 多孔金属结合剂砂轮, 磨削液, 对流换热系数, 缓进深切磨削

Abstract: Theoretical and experimental study has been conducted under creep-feed grinding mode, using a porous metal bond CBN wheel and an oil-based grinding fluid, for the machining of a nickel based super alloy.An inverse heat transfer approach is proposed to derive the distribution of CHTC(convection heat transfer coefficient) in the grinding zone under deep grinding conditions, based on the measured grinding temperature signals and the circular-arc contact moving heat source model.Under creep-feed grinding mode, the CHTC distribution along the grinding zone presents a rather different pattern compared to that in the conventional shallow-cut grinding, at a small region of the front grinding zone, the CHTC shows a sharp rising curve, whilst in the main heat exchange area, the CHTC changes rather smoothly.The change of contact arc length and feed rate has little effect on the distribution of CHTC in the main heat exchange area, and the grinding speed is the main factor affecting the CHTC.As the grinding speed is in the range of 28-42 m/s, the global CHTC is about 23 000 to 25 000 W/m2·K, when the grinding speed increases to 50 m/s, the CHTC shows a modest decrease, down to about 16 000 to 19 000 W/m2·K.Present study shows that, using a porous metal bond CBN wheel and oil-based grinding fluid, effective convective cooling can be achieved under large grinding contact arc lengths.

Key words: nickel based super alloy, porous metal bond wheel, grinding fluid, convection heat transfer coefficient, creep-feed grinding

中图分类号: