[1] 李敏, 袁巨龙, 吴喆, 等.复杂曲面零件超精密加工方法的研究进展[J].机械工程学报, 2015, 51(5):178-191.LI Min, YUAN Julong, WU Zhe, et al. Progress in ultra-precision machining methods of complex curved parts[J]. Journal of Mechanical Engineering, 2015, 51(5):178-191. [2] JIANG W, YANG L, RIEMER O, et al. Advanced Optical Manufacturing Technologies[C]//Proc. of SPIE, 2016, 9683:968301-1. [3] 张效栋.光学自由曲面加工理论及方法[J].天津科技, 2014, 41(4):6-7.ZHANG Xiaodong. Machining Theory and methods of optical free-form surfaces[J]. Tianjin Science&Technology, 2014, 41(4):6-7. [4] 袁巨龙, 邵琦, 吕冰海, 等.基于流变原理的柔性接触抛光材料去除模型综述[J].机械工程学报, 2020, 56(3):169-180.YUAN Julong, SHAO Qi, LÜBinghai, et al. Review on material removal model of flexible contact polishing based on rheological principle[J]. Journal of Mechanical Engineering, 2020, 56(3):169-180. [5] WALKER D D, BROOKS D, KING A, et al. The ‘Precessions’ tooling for polishing and figuring flat, spherical and aspheric surfaces[J]. Optics Express, 2003, 11(8):958-964. [6] ZHONG B, WANG C J, CHEN X H, et al. Time-varying tool influence function model of bonnet polishing for aspheric surfaces[J]. Applied Optics, 2019, 58(4):1101-1109. [7] PAN R, ZHONG B, CHEN D J, et al. Modification of tool influence function of bonnet polishing based on interfacial friction coefficient[J]. International Journal of Machine Tools and Manufacture, 2018, 124:43-52 [8] ZHONG B, WANG C J, CHEN X H, et al. Time-varying tool influence function model of bonnet polishing for aspheric surfaces[J]. Applied Optics, 2019, 58(4):1101-1109. [9] ZHONG B, CHEN X H, PAN R, et al. The effect of tool wear on the removal characteristics in high-efficiency bonnet polishing[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(9):3653-3662. [10] 刘锋伟, 吴永前, 陈强, 等.大口径光学非球面镜先进制造技术概述[J].光电工程, 2020, 47(10):65-87.LIU Fengwei, WU Yongqian, CHEN Qiang, et al.Overview of advanced manufacturing technology of large-aperture aspheric mirror[J]. Opto-electronic Engineering, 2020, 47(10):65-87. [11] 王宣平.高性能复杂零件磨粒流精密光整加工技术与应用[C]//2018, 年中国(国际)光整加工技术及表面工程学术会议.贵阳:中国机械工程学会, 2018.WANG X P. Abrasive flow precision finishing technology and application of high performance complex parts[C]//2018, International Conference on Surface Finishing Technology and Surface Engineering. Guiyang:Chinese Mechanical Engineering Society, 2018. [12] 李华, 任坤, 殷振, 等.超声振动辅助磨料流抛光技术研究综述[J].机械工程学报, 2021, 57(9):233-253.LI Hua, REN Kun, YIN Zhen, et al. Review of ultrasonic vibration-assisted abrasive flow polishing technology[J]. Journal of Mechanical Engineering, 2021, 57(9):233-253. [13] WEI H B, PENG C, GAO H, et al. On establishment and validation of a new predictive model for material removal in abrasive flow machining[J]. International Journal of Machine Tools and Manufacture, 2019, 138:66-79. [14] PENG C, FU Y Z, WEI H B, et al. Study on improvement of surface roughness and induced residual stress for additively manufactured metal parts by abrasive flow machining[J]. Procedia CIRP, 2018, 71:386-389. [15] 高航, 李世宠, 付有志, 等.金属增材制造格栅零件磨粒流抛光[J].航空学报, 2017, 38(10):421210-1-9.GAO Hang, LI Shichong, FU Youzhi, et al. Abrasive flow machining of additively manufactured metal grilling parts[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10):421210-1-9. [16] HAN S, SALVATORE F, RECH J. Residual stress profiles induced by abrasive flow machining(AFM) in 15-5PH stainless steel internal channel surfaces[J]. Journal of Materials Processing Technology, 2019, 267:348-358. [17] UHLMANN E, SCHMIEDEL C, WENDLER J. CFD simulation of the abrasive flow machining process[J].International Journal of Advanced Manufacturing Technology, 2015, 31:209-214 [18] 王宣平, 段合露, 孙玉文, 等.增材制造金属零件抛光加工技术研究进展[J].表面技术, 2020, 49(4):1-10.WANG Xuanping, DUAN Helu, SUN Yuwen, et al.Advances in the research of polishing technologies for additive manufacturing metal parts[J]. Surface Technology, 2020, 49(4):1-10. [19] 王嘉琪, 肖强.磁流变抛光技术的研究进展[J].表面技术, 2019, 48(10):317-328.WANG Jiaqi, XIAO Qiang. Research progress of magneto-rheological polishing technology[J]. Surface Technology, 2019, 48(10):317-328. [20] 宋辞, 彭小强, 戴一帆, 等.基于去除函数预测模型的磁流变抛光工艺优化研究[J].国防科技大学学报, 2009, 31(4):20-24.SONG Ci, PENG Xiaoqiang, DAI Yifan, et al. Research on process optimization of magnetorheological finishing basing on predictive model of removal function[J].Journal of National University of Defense Technology, 2009, 31(4):20-24. [21] 郭美健, 罗虎, 王长兵, 等.氧化锆陶瓷大抛光模磁流变抛光试验研究[J].表面技术, 2018, 47(7):28-34.GUO Meijian, LUO Hu, WANG Changbing, et al.Experimental study on magnetorheological finishing using large polishing tool for zirconia ceramic plane[J]. Surface Technology, 2018, 47(7):28-34. [22] 李蓓智, 王安伟, 杨建国, 等.磁流变抛光磁路的结构设计及有限元仿真[J].机械研究与应用, 2008, 21(2):92-95 LI Beizhi, WANG Anwei, YANG Jianguo, et al. Structural design and finite element simulation of MRF circuit[J].Mechanical Research&Application, 2008, 21(2):92-95. [23] 肖晓兰, 阎秋生, 潘继生, 等.超精密磁流变复合抛光技术研究进展[J].广东工业大学学报, 2016, 33(6):28-33.XIAO Xiaolan, YAN Qiusheng, PAN Jisheng, et al. A review on ultra-precision compound polishing technology of magnetorheological[J]. Journal of Guangdong University of Technology, 2016, 33(6):28-33. [24] GALINDO-ROSALES F J, RUBIO-HERNANDEZ F J, SEVILLA A, et al. How Dr. Malcom M. Cross may have tackled the development of "An apparent viscosity function for shear thickening fluids"[J]. Journal of Non-Newtonian Fluid Mechanics, 2011, 166(23-24):1421-1424. [25] LI M, LYU B, YUAN J, et al. Shear-thickening polishing method[J]. International Journal of Machine Tools and Manufacture, 2015, 94:88-99. [26] 王金虎, 袁巨龙, 吕冰海, 等.石英半球谐振子力流变抛光[J].飞控与探测, 2021, 4(1):60-66.WANG Jinhu, YUAN Julong, LÜBinghai, et al. Shear rheological polishing of quartz hemispheric resonator[J].Flight Control and Detection, 2021, 4(1):60-66+4. [27] LYU B H, HE Q K, CHEN S H, et al. Experimental study on shear thickening polishing of cemented carbide insert with complex shape[J]. International Journal of Advanced Manufacturing Technology, 2019, 103:585-595. [28] LYU B H, SHAO Q, HANG W, et al. Shear thickening polishing of black lithium tantalite substrate[J].International Journal of Precision Engineering and Manufacturing, 2020, 21:1663-1675. |