[1] DAI J S, REES J J. Mobility in metamorphic mechanisms of foldable/erectable kinds[J]. ASME Transaction Journal of Mechanical Design, 1999, 121(3): 375-382. [2] DAI J S, ZHANG Qixian. Metamorphic mechanisms and their configuration models[J]. Chinese Journal of Mechanical Engineering, 2000, 13(3): 121-218. [3] YAN H S, KUO C H. Topological representations and characteristics of variable kinematic joints[J]. ASME Transactions Journal of Mechanical Design, 2006, 128(2): 384-391. [4] LI Duanling, DAI Jiansheng, ZHANG Qixian, et al. Structure synthesis of metamorphic mechanism based on configuration transformation[J]. Journal of Mechanical Engineering, 2002, 38(7): 12-16. 李端玲, 戴建生, 张启先, 等. 基于构态变换的变胞机构结构综合[J]. 机械工程学报, 2002, 38(7): 12-16. [5] DAI J S, REES J J. Matrix representation of topological changes in metamorphic mechanisms[J]. ASME Transactions Journal of Mechanical Design, 2005, 127(4): 610-619. [6] WU Yanrong, JIN Guoguang, LI Dongfu, et al. Adjacency matrix method for describing configuration transformation of metamorphic mechanism[J]. Journal of Mechanical Engineering, 2007, 43(7): 23-26. 吴艳荣, 金国光, 李东福, 等. 描述变胞机构构态变换的邻接矩阵法[J]. 机械工程学报, 2007, 43(7): 23-26. [7] YANG Fei, TAO Jianguo, DENG Zongquan. A new method for describing configuration transformation of metamorphic mechanism and its application in configuration synthesis[J]. Journal of Mechanical Engineering, 2011, 47(15): 1-8. 杨飞, 陶建国, 邓宗全. 描述变胞机构构态变换的一种新方法及其在构型综合中的应用[J]. 机械工程学报, 2011, 47(15): 1-8. [8] LI Duanling, ZHANG Zhonghai. Configuration analysis of metamorphic mechanisms based on extended adjacency matrix operations[J]. Chinese Journal of Mechanical Engineering, 2011, 24(5): 767-773. [9] LI Shujun, DAI J S. Augmented adjacency matrix for topological configuration of the metamorphic mechanisms[J]. Journal of Advanced Mechanical Design Systems and Manufacturing, 2011, 5(3): 187-198. [10] BAI Guochao, LI Duanling, WEI Shimin, et al. Matrix description and calculation of metamorphic mechanism based on adjacency graph[J]. Journal of Beijing University of Posts and Telecommunications, 2014, 37(4): 1-5. 白国超, 李端玲, 魏世民, 等. 基于邻接图的变胞机构的矩阵描述及演算[J]. 北京邮电大学学报, 2014, 37(4): 1-5. [11] WANG Rugui, SUN Jiaxing, CAI Ganwei. A new representation for the configuration transformation of metamorphic mechanisms[J]. Mechanical Design and Research, 2018, 34 (3): 58-62. 王汝贵, 孙家兴, 蔡敢为. 描述变胞机构构态变换的新表示法[J]. 机械设计与研究, 2018, 34(3): 58-62. [12] CHANG Boyan, JIN Guoguang, DAI Jiansheng, et al. Incidence matrix method for describing configuration transformation of metamorphic mechanism[J]. Mechanical Science and Technology for Aerospace Engineering, 2011, 30(3): 507-511. 畅博彦, 金国光, 戴建生, 等. 描述变胞机构构态变换的关联矩阵法[J]. 机械科学与技术, 2011, 30(3): 507-511. [13] ZHAO Qiangqiang, HONG Jun, LIU Zhigang, et al. Modeling method on motive axes error transfer chain for machine tool of arbitrary topological structure[J]. Journal of Mechanical Engineering, 2016, 52(21): 130-137. 赵强强, 洪军, 刘志刚, 等. 任意拓扑结构机床运动轴误差传递链建模方法[J]. 机械工程学报, 2016, 52(21): 130-137. [14] ZHANG Wuxiang, DING Xilun, LIU Jinguo. A representation of the configurations and evolution of metamorphic mechanisms[J]. Mechanical Sciences, 2016, 7(1): 39-47. [15] SUN Wei, KONG Jianyi, SUN Liangbo. A holographic matrix representation of the metamorphic parallel mechanisms[J]. Mechanical Sciences, 2019, 10(2): 437-447. [16] JIN Guoguang, DING Xilun, ZHANG Qixian. Research on configuration-complete dynamics modeling and numerical simulation of metamorphic mechanism[J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(04): 401-405. 金国光, 丁希仑, 张启先. 变胞机构全构态动力学模型及其数值仿真研究[J]. 航空学报, 2004, 25(04): 401-405. [17] HONG Jiazhen. Computational dynamics of mulitiboby systems[M]. Beijing: Higher Education Press, 1999. 洪嘉振. 计算多体系统动力学[M]. 北京: 高等教育出版社, 1999. [18] CHANG Boyan, LIU Yanru, JIN Guoguang. Inverse dynamics of 3PUS-S(P) parallel metamorphic mechanism[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(11): 317-323. 畅博彦, 刘艳茹, 金国光. 3PUS-S(P)变胞并联机构逆动力学分析[J]. 农业机械学报, 2014, 45(11): 317-323. [19] GAN Dongming, DAI J S, DIAS J, et al. Joint force decomposition and variation in unified inverse dynamics analysis of a metamorphic parallel mechanism[J]. Meccanica, 2016, 51(7): 1583-1593. [20] HUANG Zebing, LIU Jinyang, YUAN Tingting, et al. Dynamic modeling and analysis on a deployable space truss multibody system[J]. Journal of Vibration and Shock, 2021, 40(14): 170-179. 黄泽兵, 刘锦阳, 袁婷婷, 等. 变拓扑空间可展桁架多体系统动力学建模与分析[J]. 振动与冲击, 2021, 40(14): 170-179. [21] WANG Delun, DAI Jiansheng. Theoretical basis of metamorphic mechanism and its synthesis[J]. Journal of Mechanical Engineering, 2007, 43(8): 32-42. 王德伦, 戴建生. 变胞机构及其综合的理论基础[J]. 机械工程学报, 2007, 43(8): 32-42. [22] TIAN Haibo, MA Hongwei, XIA Jing, et al. Stiffness analysis of a metamorphic parallel mechanism with three configurations[J]. Mechanism and Machine Theory, 2019, 142: 1-15. [23] ZHANG Meilin, WEI Baodong, WANG Bo. Automatic generation of mechanism topological loop[J]. Journal of Tsinghua University, 2005, 45(2): 197-200. 张美麟, 魏宝东, 王波. 机构拓扑回路的自动生成[J]. 清华大学学报, 2005, 45(2): 197-200. [24] DAI Jiansheng, DING Xilun, WANG Delun. Topological changes and the corresponding matrix operation of a spatial metamorphic mechanism[J]. Journal of Mechanical Engineering, 2005, 41(8): 30-35. 戴建生, 丁希仑, 王德伦. 一空间变胞机构的拓扑结构变换和对应的矩阵演算[J]. 机械工程学报, 2005, 41(8): 30-35. [25] LIU Youwu. Huston method of multibody dynamics and its development[J]. China Mechanical Engineering, 2000, 11(6): 601-607. 刘又午. 多体动力学的休斯敦方法及其发展[J]. 中国机械工程, 2000, 11(6): 601-607. [26] JIN Guoguang. Research on structure theory, kinematics and dynamics of metamorphic mechanism[D]. Beijing: Beijing University of Aeronautics and Astronautics, 2003. 金国光. 变胞机构结构学、运动学及动力学研究[D]. 北京: 北京航空航天大学, 2003. |