[1] LI Chuanlei,LEI Hongshuai,ZHANG Zhong,et al. Architecture design of periodic truss-lattice cells for additive manufacturing[J]. Additive Manufacturing, 2020, 34:10117. [2] LEI Hongshuai,ZHU Xiaolei,CHEN Haosen,et al. Macroscopic response of carbon-fiber pyramidal truss core panel taking account of local defect[J]. Composites Part B,2015,79(5):311-321. [3] GE Qi,BIN Ji,LI Ma. Mechanical response of pyramidal lattice truss core sandwich structures by additive manufacturing[J]. Mechanics of Advanced Materials and Structures,2019,26(15):1298-1306. [4] QI Dexing, HU Wenxia,XIN Kehao,et al. In-situ synchrotron X-ray tomography investigation of micro lattice manufactured with the projection micro-stereolithography (PμSL) 3D printing technique:Defects characterization and in-situ shear test[J]. Composite Structures,2020,252:112710. [5] RASHID R,MASOOD S H,RUAN D,et al. Effect of energy per layer on the anisotropy of selective laser melted AlSi12 aluminium alloy[J]. Additive Manufacturing,2018,22:426-439. [6] XIONG Z H,LIU S L,LI S F,et al. Role of melt pool boundary condition in determining the mechanical properties of selective laser melting AlSi10Mg alloy[J]. Materials Science & Engineering A,2019,740-741:148-156. [7] LU J L,LIN X,LIAO H L,et al. Coddet. Compression behaviour of quasicrystal/Al composite with powder mixture driven layered microstructure prepared by selective laser melting[J]. Optics and Laser Technology,2020,129:106277. [8] JEON J M,PARK J M,YU Jihun,et al. Effects of microstructure and internal defects on mechanical anisotropy and asymmetry of selective laser-melted 316L austenitic stainless steel[J]. Materials Science and Engineering:A,2019,763:138-152. [9] WANG Shifeng,LI Shuai,WEI Qingsong,et al. Effect of molten pool boundaries on the mechanical properties of selective laser melting parts[J]. Journal of Materials Processing Technology,2014,214(11):2660-2667. [10] MERTENS A,REGINSTER S,PAYDAS H,et al. Mechanical properties of alloy Ti-6Al-4V and of stainless steel 316L processed by selective laser melting:Influence of out-of-equilibrium microstructures[J]. Powder Metallurgy,2014,57(3):184-189. [11] YANG Y,ZHU Y,KHONSARI M M,et al. Wear anisotropy of selective laser melted 316L stainless steel[J]. Wear,2019,428-429:376-386. [12] ROSENTHAL I,STERN A,FRAGE N. Strain rate sensitivity and fracture mechanism of AlSi10Mg parts produced by selective laser melting[J]. Materials Science and Engineering A,2016,682(13):509-517. [13] GIBSON L J,ASHBY M F. Cellular solids:Structure and properties[M]. 2nd ed. Cambridge:Cambridge University Press,1997. [14] BYSTRM J. The homogenization method applied to the computation of effective thermal conductivities of composite materials[J]. Sveriges Geologiska Underskning, 1996. [15] 杜义贤,李涵钊,田启华,等. 基于能量均匀化的高剪切强度周期性点阵结构拓扑优化[J]. 机械工程学报, 2017,53(18):152-160. DU Yixin,LI Hanzhao,TIAN Qihua,et al. Topology optimization of periodic lattice structure with high shear strength based on energy homogenization[J]. Journal of Mechanical Engineering,2017,53(18):152-160. [16] SUTTAKUL P,FONGSAMOOTR T,VO D,et al. Effects of shear deformation of struts in hexagonal lattices on their effective in-plane material properties[J]. Materials Science Forum,2021,1034:193-198. [17] EYNBEYGUI M,ARGHAYANI J,AKBARZADEH A H,et al. Anisotropic elastic-plastic behavior of architected pyramidal lattice materials[J]. Acta Materialia,2020,183:118-136. [18] 柏龙,熊飞,陈晓红,等. SLM制备的Ti6Al4V轻质点阵结构多目标结构优化设计研究[J]. 机械工程学报,2018,54(5):156-165. BAI Long,XIONG Fei,CHEN Xiaohong,et al. Multi objective structural optimization design of Ti6Al4V light lattice structure prepared by SLM[J]. Journal of Mechanical Engineering,2018,54(5):156-165. [19] PTOCHOS E,LABEAS G. Shear modulus determination of cuboid metallic micro-lattice cellular structures by analytical, numerical and homogenisation methods[J]. Strain,2012,48(5):415-429. [20] 侯伟,陈静,储松林,等. 选区激光熔化成形AlSi10Mg组织与拉伸性能的各向异性研究[J]. 中国激光,2018,45(7):67-77. HOU Wei,CHEN Jing,CHU Songlin,et al. Teng Weibin. Anisotropy of microstructure and tensile properties of AlSi10Mg formed by selective laser melting[J]. China Laser,2018,45(7):67-77. |