[1] 张伟. 航空发动机[M]. 北京:航空工业出版社,2008. ZHANG Wei. Aircraft engine[M]. Beijing:Aviation Industry Press,2008. [2] 张春江. 钛合金切削加工技术[M]. 西安:西北工业大学出版社,1986. ZHANG Chunjiang. Titanium alloy processing technology[M]. Xi'an:Northwestern Polytechnical University Press,1986. [3] 马付建,栾诗宇,罗奇超,等. 超声辅助磁性磨料光整加工工艺对钛合金表面完整性的影响[J]. 中国表面工程,2019,32(2):128-136. MA Fujian,LUAN Shiyu,LUO Qichao,et al. Effects of ultrasonic assisted magnetic abrasive finishing on surface integrity of titanium alloy[J]. China Surface Engineering,2019,32(2):128-136. [4] DAWIHL W. Properties of cemented carbide compositions and their relation to the wear resistance[J]. Zeitschrift Metallkunde,1940,32:320-325. [5] TRENT E M. Some factors affecting wear on cemented carbide tools[J]. Proceedings of the Institution of Mechanical Engineers,2006,166(1). [6] TRIGGER K J,CHAO B T. The Mechanism of Crater Wear of Cemented Carbide Tools[J]. ASME,1956,78:1119-1126. [7] TAKEYAMA H,MURATA R. Basic investigation of tool wear[J]. Journal of Engineering for Industry,1963,85:33. [8] 毕雪峰. 金属切削中刀具月21牙洼磨损和塑性变形的研究[D]. 沈阳:东北大学,2010. BI Xuefeng. Investigation of tool crater wear and plastic deformation in metal cutting[D]. Shenyang:Northeastern University,2010. [9] 王晓琴. 钛合金Ti6Al4V高效切削刀具摩擦磨损特性及刀具寿命研究[D]. 济南:山东大学,2009. WANG Xiangqin. Study on tribological behavior and tool life in Ti6Al4V high performance machining[D]. Jinan:Shandong University,2009. [10] HUANG Yong,LIANG S Y. Modelling of CBN tool crater wear in finish hard turning[J]. The International Journal of Advanced Manufacturing Technology,2004,24:9-10. [11] 孙玉晶,孙杰,李剑峰. 钛合金铣削加工刀具磨损有限元预测分析[J]. 机械工程学报,2016,52(5):193-201. SUN Yujing,SUN Jie,LI Jianfeng. Finite element analysis on prediction of tool wear in milling titanium[J]. Journal of Mechanical Engineering,2016,52(5):193-201. [12] ZHANG Chengyan,LU Jiping,ZHANG Faping,et al. Identification of a new friction model at tool-chip interface in dry orthogonal cutting[J]. The International Journal of Advanced Manufacturing Technology,2017,89:1-4. [13] JOHNSON G R. A constitutive model and data for metals subjected to large strains,high strain rates and high temperatures[J]. Engineering Fracture Mechanics,1983,21:541-548. [14] 岳彩旭,都建标,刘献礼,等. 考虑时变性热强度和时变性热量分配比的铣刀前刀面瞬态温度场建模研究[J].机械工程学报,2019,55(9):206-216. YUE Caixu,DOU Jianbiao,LIU Xianli,et al. Modeling research on transient temperature field of rake face on end mills considering time-varying heat intensity and time-varying distribution ratio[J]. Journal of Mechanical Engineering,2019,55(9):206-216. [15] BUDAKE,OZLU E. Development of a thermomechanical cutting process model for machining process simulations[J]. CIRP Annals-Manufacturing Technology,2008,57(1):97-100. [16] MOUFKI A,DEVILLEZ A,DUDZINSKI D,et al. Thermomechanical modelling of oblique cutting and experimental validation[J]. International Journal of Machine Tools & Manufacture,2004,44(9):971-989. [17] 缪晨炜,郭智威,袁成清. 仿生多尺度沟槽织构对表面摩擦性能的影响[J]. 中国表面工程,2019,32(1):22-30. MIAO Chenwei,GUO Zhiwei,YUAN Chengqing. Effects of bionic multi-scales groove textures on surface tribological properties[J]. China Surface Engineering,2019,32(1):22-30. [18] RABINOWICZ E,DUNN L A,RUSSELL P G. A study of abrasive wear under three-body conditions[J]. Wear,1961,4(5):345-355. [19] USUI E,SHIRAKASHI T,KITAGAWA T. Analytical prediction ofcutting tool wear[J]. Wear,1984,100(1):129-151. [20] 姜增辉,王琳琳,石莉,等.硬质合金刀具切削Ti6Al4V的磨损机理及特征[J]. 机械工程学报,2014,50(1):178-184. JIANG Zenghui,WANG Linlin,SHI Li,et al.Study on tool wear mechanism and characteristics of carbide tools in cutting Ti6Al4V[J]. Journal of Mechanical Engineering,2014,50(1):178-184. |