• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2021, Vol. 57 ›› Issue (18): 107-117.doi: 10.3901/JME.2021.18.107

• 特邀专栏:高速铁路钢轨检测监测与应用 • 上一篇    下一篇

扫码分享

钢轨波磨自感知原位检测系统试验研究

孙玉华1, 王平2,3, 徐井芒2,3, 王源4, 王佩根1, 高鸣源1,3   

  1. 1. 西南大学工程技术学院 重庆 400716;
    2. 西南交通大学土木工程学院 成都 610031;
    3. 高速铁路线路工程教育部重点实验室 成都 610031;
    4. 南方科技大学系统设计与智能制造学院 深圳 518055
  • 收稿日期:2021-01-07 修回日期:2021-05-17 出版日期:2021-09-20 发布日期:2021-11-30
  • 通讯作者: 高鸣源(通信作者),男,1985年出生,博士,副教授。主要研究方向为振动能量俘获技术和轨道交通智能检测与监测技术。E-mail:goalmychn@gmail.com
  • 作者简介:孙玉华,男,1983年出生,博士,副教授。主要研究方向为振动控制,振动俘能技术和农业机械开发。E-mail:syh@swu.edu.cn
  • 基金资助:
    国家自然科学基金(52008343)和重庆市科学技术局重点(cstc2019jscx-gksbX0148)资助项目。

Experimental Study of Self-powered and Self-sensing System for the Rail Corrugation In-situ Inspection

SUN Yuhua1, WANG Ping2,3, XU Jingmang2,3, WANG Yuan4, WANG Peigen1, GAO Mingyuan1,3   

  1. 1. College of Engineering and Technology, Southwest University, Chongqing 400716;
    2. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031;
    3. Key Laboratory of High-speed Railway Engineering, Ministry of Education, Chengdu 610031;
    4. School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen 518055
  • Received:2021-01-07 Revised:2021-05-17 Online:2021-09-20 Published:2021-11-30

摘要: 城市轨道交通中钢轨周期性的波浪形磨耗频发,已严重影响列车的运营安全。钢轨波磨会产生高分贝的噪声,同时引起地基和附近建筑物的振动。目前的轨道波磨检测仪只能在列车停运的状态下(离线)执行检测,且检测设备需要外部供电。基于钢轨振动能量的钢轨波磨原位检测方法是在线检测且无需外部供电,该系统采用三悬浮磁体互斥布置以增强对钢轨振动能量的宽频带俘获,通过仿真和试验确定俘能系统的最佳起始点。借助宽频扫频试验和实测钢轨振动数据验证系统的感知性能,结合小波理论分析钢轨波磨的时频分布特性。结果表明:所提出的原位检测系统能够在宽频带内俘获波磨激励下的钢轨振动能量,进而依据所产生电信号的时频特性来判断钢轨波磨状态。该钢轨波磨原位检测新方法,可实现在线无源检测,减少轨道检测的人工参与度和工作量,有望加速轨道检测技术的智能化进程。

关键词: 波磨, 自感知, 原位检测, 随机振动, 功率谱, 小波

Abstract: Rail corrugation, as a widely periodic wear pattern of the railway track in urban rail transit, has already affected the safe operation of the railcar. Meanwhile, the rail corrugation also could cause high-pitched noise and vibration of the ground and nearby buildings. The current rail corrugation inspection trolley can only be employed offline, whereas offline monitoring devices require an external power supply. An approach of the rail corrugation in-situ inspection based on the rail vibration energy is proposed. The mechanics of the magnetic-floating energy harvester employs a triple-magnet repellent configuration to enhance broad-band energy harvesting of the rail vibration, and the best start position of the energy harvester is experimentally validated combing with the simulation analysis. The performance of self-powered and self-sensing harvester is verified by the experimental study which includes a comprehensive broad-band sinusoidal sweeping vibration test and a stochastic vibration test based on the measured railway track spectra, and the wavelet theory is implemented together to analyse the time-frequency distribution characteristics of the rail corrugation. Results indicate that the proposed rail corrugation in-situ inspection system could collect the rail vibration energy under the rail corrugation excitation across a wider frequency range and then determine the rail corrugation status by time-frequency characteristics of the induced voltage signal. The new approach of the rail corrugation in-situ inspection proposed by this study could realize the rail corrugation online in-situ inspection without external batteries and reduce manual involvement and workload for railway track inspection. It is very hopeful of accelerating the intelligent process of rail inspection technology.

Key words: rail corrugation, self-sensing, in-situ inspection, stochastic vibration, power spectrum density, wavelet

中图分类号: