• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2020, Vol. 56 ›› Issue (16): 44-53.doi: 10.3901/JME.2020.16.044

• 材料科学与工程 • 上一篇    下一篇

扫码分享

CNT梯度增强纤维压电复合板壳几何非线性建模与分析

薛婷1,2, 秦现生1, 张顺琦3, 王战玺1, 白晶1   

  1. 1. 西北工业大学机电学院 西安 710072;
    2. 西安建筑科技大学机电工程学院 西安 710055;
    3. 上海大学机电工程与自动化学院 上海 200444
  • 收稿日期:2019-09-21 修回日期:2020-06-06 出版日期:2020-08-20 发布日期:2020-10-19
  • 通讯作者: 张顺琦(通信作者),男,1984年出生,博士,副教授。主要研究方向为智能结构非线性有限元建模与仿真、结构主动振动控制、智能装备技术等。E-mail:zhangsq@shu.edu.cn
  • 作者简介:薛婷,女,1989年出生,博士研究生。主要研究方向为智能装备技术、智能结构建模与仿真、智能结构主动振动控制等。E-mail:xueting.mx@mail.nwpu.edu.cn
  • 基金资助:
    国家自然科学基金青年(11602193,51505380,11972020)、陕西省重点研发计划(2016KTZDGY4-03)、陕西省科技创新(2016KTZDGY4-12)和“111计划”(B13044)资助项目。

Geometrically Nonlinear Modeling and Analysis of Functionally Graded Carbon Nanotube-reinforced Composite Rectangular Plate Shells with MFCs

XUE Ting1,2, QIN Xiansheng1, ZHANG Shunqi3, WANG Zhanxi1, BAI Jing1   

  1. 1. School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072;
    2. School of Mechanical and Electrical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055;
    3. School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444
  • Received:2019-09-21 Revised:2020-06-06 Online:2020-08-20 Published:2020-10-19

摘要: 航天环境中大型挠性结构的振动衰减一直是亟待攻克的难题,粗纤维压电(Micro-fiber composite,MFC)的高柔性、强制动力特点以及碳纳米管(Carbon nanotube,CNT)的超高弹性模量、低密度属性使得CNT梯度增强纤维压电智能结构特别适用于航天高落差温度环境,基于一阶剪切变形大转角几何全非线性理论(First order shear deformation-large rotation theory,FSDT-LRT56)建立碳纳米管梯度增强粗纤维压电复合板壳分析模型具有重要的意义。模型中区别了两种结构的粗纤维压电,即MFC-d31和MFC-d33。悬臂梁板壳结构的力学响应及功能梯度碳纳米管频域分析验证了模型的准确性,基于该模型探究了碳纳米管增强体的分布形式、压电纤维角度对其力学性能的影响。研究表明,几何全非线性模型更能真实地反映板壳结构的实际变形情况;X型功能梯度分布可以更有效地改善板壳的刚度,使板壳力学性能最佳;MFC控制方式及纤维角度是板壳形状控制的主要因素,控制纤维角为90°时,结构变形取得最小值;不同的控制模式对板壳扭转控制产生很大的区别。基于大转角几何全非线性理论对压电智能薄壳结构的仿真分析对实现航天领域内大型挠性部件的形状控制、振动抑制等具有巨大的应用价值。

关键词: 一阶剪切变形大转角几何全非线性理论, 纤维压电, 梯度分布, 几何非线性

Abstract: Vibration suppression has been a problem needs to be overcome for large-scale flexible structures in the aerospace environment. High elastic modulus, low density advantages of carbon nanotube (CNT) and large actuation forces and flexibility of micro-fiber composite (MFC) make the CNT gradient-reinforced fiber piezoelectric smart structure particularly suitable for aerospace high drop temperature environment.Based on the first order shear deformation and large rotation theory with six parameters, the nonlinear finite element modeling and analysis of the carbon nanotube-reinforced gradient composite plate with MFCs is meaningful.The geometrically nonlinear finite element model is developed for two different kinds of MFC, namely MFC-d31 and MFC-d33.First, the accuracy of the model is validated by experiment results of a piezoelectric cantilever beam and a FG-CNTRC plate. Then, The effects of the distribution form of CNT and piezo fiber angle of MFC on composite structure are verified, respectively. It is found that the distribution form of CNT has a great effect on the stiffness of shell structure, reinforcing in X shape can improve the whole stiffness much more effectively, the plate shows the lowest deflection when fiber is vertical to the reinforcement direction, different control modes make a big difference in the torsion control of the plate and shell. The simulation analysis of piezoelectric smart thin-shell structure based on large rotation theory with six parameters has great application value for shape control and vibration suppression of large flexible components in the aerospace field.

Key words: first order shear deformation-large rotation theory with six parameters, piezoelectric fiber, graded distribution, geometrically nonlinear

中图分类号: