• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2020, Vol. 56 ›› Issue (14): 138-145.doi: 10.3901/JME.2020.14.138

• 运载工程 • 上一篇    下一篇

扫码分享

智能汽车的路面附着极限横向轨迹跟踪控制

辛喆1, 陈海亮1, 林子钰2, 孙恩鑫1, 孙琪2, 李升波2   

  1. 1. 中国农业大学工学院 北京 100083;
    2. 清华大学汽车工程系 北京 100084
  • 收稿日期:2019-07-24 修回日期:2020-02-29 出版日期:2020-07-20 发布日期:2020-08-12
  • 作者简介:辛喆,女,1964年出生,博士,教授。主要研究方向为车辆智能化及电气化。E-mail:xinzhe@cau.edu.cn;陈海亮,男,1992年出生,硕士。主要研究方向为车辆动力学控制。E-mail:chenhailiang_cau@126.com;林子钰,女,1994年出生,博士。主要研究方向为自动驾驶及动力学控制。E-mail:linzy17@mails.tsinghua.edu.cn;孙恩鑫,男,1996年出生,硕士。主要研究方向为自动驾驶及最优估计。E-mail:enxinsun1996@163.com;孙琪,男,1989年出生,博士。主要研究方向为自动驾驶技术及分布式协作。E-mail:qisun@mail.tsinghua.edu.cn;李升波,男,1982年出生,博士,副教授。主要研究方向为自动驾驶技术、强化学习、分布式控制等。E-mail:lishbo@tsinghua.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(U1664263和61790561)。

Lateral Trajectory Following for Automated Vehicles at Handling Limits

XIN Zhe1, CHEN Hailiang1, LIN Ziyu2, SUN Enxin1, SUN Qi2, LI Shengbo2   

  1. 1. College of Engineering, China Agricultural University, Beijing 100083;
    2. Department of Automotive Engineering, Tsinghua University, Beijing 100084
  • Received:2019-07-24 Revised:2020-02-29 Online:2020-07-20 Published:2020-08-12

摘要: 在极限轮胎-路面条件下,智能汽车的横向操纵性能急剧恶化,增加了自动驾驶系统的控制难度。现有研究主要聚焦智能汽车轨迹跟踪的性能,但是难以解决低附着路面、紧急避障等极限工况下的智能汽车轨迹跟踪时的安全性和稳定性。利用模型预测控制方法实现了智能汽车的轨迹跟踪,同时保证智能汽车行驶稳定性和安全性,仿真试验同样表明该控制器具有较好的鲁棒性。结合二次型代价函数和安全约束构建了轨迹跟踪的开环最优预测控制问题,通过约束车辆的前后轮侧偏角,保持极限工况下智能汽车的行驶稳定性。研究方法与结果可为智能汽车设计提供参考。

关键词: 自动驾驶, 智能车辆, 胎动力学, 横向稳定性, 预测控制

Abstract: Under the limiting tire-road condition, the lateral operating control performance of vehicles would deteriorate sharply, which increases the control difficulty of the autopilot system. The existing researches mainly focused on the performance of intelligent vehicle trajectory trace controls without considerations of the safety and stability of the vehicle under low traction road surface, emergency obstacle avoidance and other limiting operation conditions. A lateral motion control method for automated vehicles is proposed by using the model predictive control (MPC) framework, which can ensure the driving stability and safety of intelligent vehicles. Meanwhile the simulation test results also show that the designed controller has a strong robustness. The open loop optimal control problem is formulated by using quadratic cost function and squared safety envelope. The side-slip angles of both front and rear wheels are constrained as the safety envelope so as to ensure the vehicle stability under the limiting operation conditions. The research methods and results can provide a reference for intelligent vehicle design.

Key words: automatic steering, intelligent vehicles, tire dynamics, lateral stability, predictive control

中图分类号: