• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2019, Vol. 55 ›› Issue (21): 127-138.doi: 10.3901/JME.2019.21.127

• 数字化设计与制造 • 上一篇    下一篇

面向加工变形控制的航空整体结构件拓扑优化设计方法

王华敏1,2, 秦国华1, 胡政1, 林锋1, 吴竹溪1, 韩雄3   

  1. 1. 南昌航空大学航空制造工程学院 南昌 330063;
    2. 南京航空航天大学机电学院 南京 210016;
    3. 成都飞机工业(集团)有限责任公司数控加工厂 成都 610092
  • 收稿日期:2018-11-04 修回日期:2019-08-05 出版日期:2019-11-05 发布日期:2020-01-08
  • 通讯作者: 秦国华(通信作者),男,1970年出生,博士后,教授,博士研究生导师。主要研究方向为数控加工过程建模与仿真、工件装夹分析与综合、刀具磨损检测方法、全制造周期残余应力分析与预测、制造业信息化技术。E-mail:qghwzx@126.com
  • 作者简介:王华敏,女,1988年出生,博士研究生。主要研究方向为夹具的自动化设计、数控加工过程建模与仿真。
  • 基金资助:
    国家自然科学基金(51765047,51465045)、江西省主要学科学术和技术带头人资助计划(20172BCB22013)、江西省科技厅重点研发计划(20192BBEL50001)、航空科学基金(2016ZE56011)、成飞横向科技服务项目((16)-025)、广东省教育厅特色创新类项目(2017GKTSCX102)和江西省教育厅科技项目(GJJ170572)资助项目。

A Structural Topology Optimal Design Approach to Machining Deformation Control for Aeronautical Monolithic Components

WANG Huamin1,2, QIN Guohua1, HU Zheng1, LIN Feng1, WU Zhuxi1, HAN Xiong3   

  1. 1. School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang 330063;
    2. College of Mechanical & Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016;
    3. Numerical Control Machining Factory, Chengdu Aircraft Industrial(Group) Co., Ltd, Chengdu 610092
  • Received:2018-11-04 Revised:2019-08-05 Online:2019-11-05 Published:2020-01-08

摘要: 在毛坯制造过程中,材料力学性能的非均匀性导致铝合金厚板内产生残余应力,以致在后续的高速切削加工过程中,随着材料的大量去除,残余应力的释放使得整体结构件发生变形,严重影响着整体结构件的尺寸稳定性。当初始残余应力水平及状态一定时,随着从毛坯上去除材料切削成形为不同的零件结构,零件变形会表现出不同的形式。因此,研究零件变形与零件结构形式之间的关系对于实现加工过程的高效化和精密化至关重要。首先,通过铝厚板的材料去除等效为残余应力的释放,利用弯曲变形理论建立铝厚板厚度方向上加工变形的解析分析模型及有限元分析模型。通过航空企业现场加工、测试零件后可知:加工变形的解析值、仿真值与测量值相比,无论是幅值水平还是变形曲线,解析值与仿真值完全吻合,而两者与实验值之间仅存在不到10%的幅值误差。其次,为了使得加工变形达到最小,构建以结构体积为约束的拓扑优化设计模型,通过利用一系列凸显式子问题逼近目标和约束函数,构建拓扑优化模型的MMA求解技术。最后利用所提出的优化方法计算出C919直梁件的结构,优化前、后的加工变形分别为22.02 mm与0.7414 mm,在相同的材料去除量情况下,通过优化结构可以使得加工变形减小96.63%。

关键词: 航空整体结构件, 初始残余应力, 加工变形, 拓扑优化, MMA算法

Abstract: In the manufacturing process of blank, the non homogeneity of mechanical properties of the material can produce the residual stress in the aluminum alloy thick plate. During the following high speed cutting process with the removal of the material, the release of residual stress can cause the deformations of the aeronautical monolithic component. It will seriously affects the size stability of the aeronautical monolithic component. Under the assumption of the unchanged magnitude and distribution of the initial residual stress, the workpiece deformation is not uniform with various workpiece structure. Therefore, the effect of residual stress release on machining deformations of various structures is investigated to guarantee the machining quality. It is very crucial for the realization of machining process with high efficiency and precise. Above all, according to separation of a blank into removed materials and formed workpiece, the analytical model of machining deformations is deduced by the bend deformation theory as well as the finite element method. The experiment of machined workpieces, carried out in NC machining factory, shows that both the amplitude and deformation curve, the simulated results are complete agreement with the analytical data. But the twos are less than 10% difference of the amplitude with the experimental values. And then, under the constraint of a given volume ratio, a topology optimal design model is established for the minimum machining deformation. By a series of explicit sub-problems approximating the objective and constraint functions, MMA solution technology is suggested for the presented topology optimal design model. Finally, the presented topology optimal design model is used to calculate the straight beam of C919. The machining deformation of the optimized structure is 0.7414 mm whereas the machining deformation of the un-optimized structure is 22.02 mm. Under the condition of the same material removals, the optimized structure can decrease 96.63% machining deformations.

Key words: aeronautical monolithic component, initial residual stress, machining deformation, topology optimization, MMA algorithm

中图分类号: