机械工程学报 ›› 2018, Vol. 54 ›› Issue (13): 34-46.doi: 10.3901/JME.2018.13.034
毕树生1, 刘畅1, 周晓东2, 于靖军1
收稿日期:
2017-07-15
修回日期:
2017-10-31
出版日期:
2018-07-05
发布日期:
2018-07-05
通讯作者:
毕树生(通信作者),男,1966年出生,博士,博士研究生导师。主要研究方向为全柔性机构及仿生机器人。E-mail:ssbi@buaa.edu.cn
作者简介:
刘畅,男,1989年出生,博士研究生。主要研究方向为可调刚度致动器。E-mail:liuchang_t@buaa.edu.cn
基金资助:
BI Shusheng1, LIU Chang1, ZHOU Xiaodong2, YU Jingjun1
Received:
2017-07-15
Revised:
2017-10-31
Online:
2018-07-05
Published:
2018-07-05
摘要: 可调刚度致动器具有本质安全性、高能效以及高动态特性,可以满足新一代机器人在物理性人机交互及高动态运动任务中的性能需求。根据刚度调节原理的不同,对常见的可调刚度致动器进行了分类,并分别对其刚度特性及调节范围、承载能力、变形能力以及储能能力进行了分析,然后对比和总结了各种刚度调节机构的性能特点。研究者在设计新装置时可以参考这些信息,根据自身应用需求以及不同种类刚度调节方式的性能侧重方向的不同,选择并设计合适的可调刚度致动器。对可调刚度致动器的现有结构存在的问题做出分析和讨论,并对其未来的发展方向做了展望。
中图分类号:
毕树生, 刘畅, 周晓东, 于靖军. 可调刚度致动器结构研究综述[J]. 机械工程学报, 2018, 54(13): 34-46.
BI Shusheng, LIU Chang, ZHOU Xiaodong, YU Jingjun. Variable Stiffness Actuators: A Review of the Structural Research[J]. Journal of Mechanical Engineering, 2018, 54(13): 34-46.
[1] ROBINSON D W. Design and analysis of series elasticity in Cclosed-loop actuator force control[D]. MIT, 2000. [2] READMANN M. Flexible joint robots[M]. CRC Press, 1994. [3] CANNON R H, SCHMITZ E. Initial experiments on the end-point control of a flexible one-link robot[J]. The International Journal of Robotics Research, 1984, 3(3):62-75. [4] CANNON R H, ROSENTHAL D E. Experiments in control of flexible structures with noncolocated sensors and actuators[J]. Journal of Guidance, Control, and Dynamics, 1984, 7(5):546-553. [5] STIEHL W D,LIEBERMAN J,BREAZEAL C,et al. The huggable:A therapeutic robotic companion for relational, affective touch[C]//20063rd IEEE Consumer Communications and Networking Conference, New York, USA:2006:1290-1291. [6] GORIS K, SALDIEN J, VANDERBORGHT B, et al. How to achieve the huggable behavior of the social robot Probo? A reflection on the actuators[J]. Mechatronics, 2011, 21(3):490-500. [7] HUSSAIN S, XIE S Q, JAMWAL P K, et al. An intrinsically compliant robotic orthosis for treadmill training[J]. Medical Engineering and Physics, 2012, 34(10):1448-1453. [8] GARCIA E, JUAN C A, GUSTAVO M, et al. On the biomimetic design of agile-robot legs[J]. Sensors, 2011, 11(12):11133-11305. [9] RIESE S, ANDRE S. Robustness and efficiency of a variable-leg-spring hopper[C]//Biomedical Robotics and Biomechatronics (BioRob), Rome, Italy:2012:1347-1352. [10] ROOZING W, VISSER L C, CARLONI R. Variable bipedal walking gait with variable leg stiffness[C]//5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, São Paulo, Brazil:2014:931-938. [11] HURST J W,CHESTNUTT J E,RIZZI A A. The actuator with mechanically adjustable series compliance[J]. IEEE Transactions on Robotics, 2010, 26(4):597-606. [12] DOPPMANN C, UGURLU B, HAMAYA M, et al. Towards balance recovery control for lower body exoskeleton robots with variable stiffness actuators:Spring-loaded flywheel model[C]//2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle,Washington:2015:5551-5556. [13] BLAYA J A, HERR H. Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait[J]. Neural Systems and Rehabilitation Engineering, IEEE Transactions on, 2004, 12(1):24-31. [14] HADDADIN S, HUBER F, ALBU-SCHAFFER A. Optimal control for exploiting the natural dynamics of Variable Stiffness robots[C]//Robotics and Automation (ICRA), 2012 IEEE Internat, Saint Paul, MN:2012:3347-3354. [15] GARABINI M, PASSAGLIA A, BELO F, et al. Optimality principles in variable stiffness control:The VSA hammer[C]//IEEE International Conference on Intelligent Robots and Systems, San Francisco, California:IEEE, 2011:3770-3775. [16] HADDADIN S, LAUE T, FRESE U, et al. Kick it with elasticity:Safety and performance in human-robot soccer[C]//2nd Workshop on Humanoid Soccer Robots, Pittsburgh, PA:2009:761-775. [17] GREBENSTEIN M, ALBU-SCHAFFER A, BAHLS T, et al. The DLR hand arm system[C]//2011 IEEE International Conference on Robotics and Automation, Shanghai, China:IEEE, 2011:3175-3182. [18] PRATT G A, WILLIAMSON M M, DILLWORTH P, et al. Stiffness isn't everything[M]. Experimental Robotics IV, London:Springer-Verlag, 1995. [19] MORITA T, SUGANO S. Development of an anthropomorphic force-controlled manipulator WAM-10[C]//Advanced Robotics, 1997. ICAR '97. Proceedings, 8th International Conference on, Monterey, CA:IEEE, 1997:701-706. [20] WHITNEY D E. Historical perspective and state of the art in robot force control[J]. The International Journal of Robotics Research, 1987, 6(3):3-14. [21] HOGAN N. Impedance control:An approach to manipulation:Part I-theory[J]. Journal of Dynamic Systems, Measurement, and Control, 1985, 107(1):1-7. [22] HOLLERBACH J M, HUNTER I, BALLANTYNE J. A comparative analysis of actuator technologies for robotics[M]. Cambridge:MIT Press, 1992. [23] PRATT G A, WILLIAMSON M M. Series elastic actuators[C]//1995 IEEE/RSJ International Conference on Intelligent Robots and Systems, ‘Human Robot Interaction and Cooperative Robots’, Pittsburgh, PA, USA:IEEE Comput. Soc. Press, 1995, 1(1524):399-406. [24] METTIN U, LA HERA P X, FREIDOVICH L B, et al. Parallel elastic actuators as a control tool for preplanned trajectories of underactuated mechanical systems[J]. The International Journal of Robotics Research, 2010, 29(9):1186-1198. [25] HURST J W, RIZZI A A. Series compliance for an efficient running gait[J]. Robotics & Automation Magazine IEEE, 2008, 15(3):42-51. [26] YAMAGUCHI J, TAKANISHI A. Development of a biped walking robot having antagonistic driven joints using nonlinear spring mechanism[C]//Proceedings of International Conference on Robotics and Automation, Albuquerque, NM:1997:185-192. [27] JAFARI A, TSAGARAKIS N G, BRAM V, et al. An intrinsically safe actuator with the ability to adjust the stiffness[C]//7th IARP Workshop on Technical Challenges for Depe, 2010. [28] PARK J, SONG J. Safe joint mechanism using inclined link with springs for collision safety and positioning accuracy of a robot arm[C]//2010 IEEE International Conference on Robotics and Automation, Anchorage, AK:IEEE, 2010:813-818. [29] JAFARI A, TSAGARAKIS N G, CALDWELL D G. Exploiting natural dynamics for energy minimization using an actuator with adjustable stiffness (AwAS)[C]//IEEE International Conference on Robotics and Automation ICRA, Shanghai, China:IEEE, 2011:4632-4637. [30] VU H Q, YU X, ⅡDA F, et al. Improving energy efficiency of hopping locomotion by using a variable stiffness actuator[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(1):472-486. [31] JOSEPH C W, BRADSHAW E J, KEMP J, et al. The interday reliability of ankle, knee, leg, and vertical musculoskeletal stiffness during hopping and overground running[J]. Journal of Applied Biomechanics, 2013, 29(4):386-394. [32] WOLF S, GRIOLI G, EIBERGER O, et al. Variable stiffness actuators:Review on design and components[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(5):2418-2430. [33] HAM R, SUGAR T, VANDERBORGHT B, et al. Compliant actuator designs[J]. IEEE Robotics & Automation Magazine, 2009, 16(3):81-94. [34] VANDERBORGHT B, ALBU-SCHAEFFER A, BICCHI A, et al. Variable impedance actuators:A review[J]. Robotics and Autonomous Systems, 2013, 61(12):1601-1614. [35] TSAGARAKIS N G, LAFFRANCHI M, VANDERBORGHT B, et al. A compact soft actuator unit for small scale human friendly robots[C]//IEEE International Conference on Robotics and Automation, Kobe, Japan:IEEE, 2009:4356-4362. [36] BIGGE B, HARVEY I R. Programmable springs:Developing actuators with programmable compliance for autonomous robots[J]. Robotics and Autonomous Systems, 2007, 55(9):728-734. [37] VAN HAM R, BRAM V, VAN DAMME M, et al. MACCEPA, the mechanically adjustable compliance and controllable equilibrium position actuator:Design and implementation in a biped robot[J]. Robotics and Autonomous Systems, 2007, 55(10):761-768. [38] FURNEMONT R, MATHIJSSEN G, VAN DER HOEVEN T, et al. Torsion MACCEPA:A novel compact compliant actuator designed around the drive axis[C]//IEEE International Conference on Robotics and Automation, Seattle, Washington:IEEE, 2015:232-237. [39] WOLF S, HIRZINGER G. A new variable stiffness design:Matching requirements of the next robot generation[C]//IEEE International Conference on Robotics and Automation, Pasadena, CA:IEEE, 2008:1741-1746. [40] SEBASTIAN W, OLIVER E, GERD H. The DLR FSJ:Energy based design of a variable stiffness joint[C]//IEEE International Conference on Robotics and Automation, Shanghai, China:IEEE, 2011:5082-5089. [41] WU Y, LAN C. Design of a linear variable-stiffness mechanism using preloaded bistable beams[C]//IEEE ASME International Conference on Advanced Intelligent Mechatronics, Besançon, France:IEEE, 2014:605-610. [42] BRAM V, TSAGARAKIS N G, VAN HAM R, et al. MACCEPA 2.0:Compliant actuator used for energy efficient hopping robot Chobino1D[J]. Autonomous Robots, 2011, 31(1):55-65. [43] ENGLISH C E, RUSSELL D. Mechanics and stiffness limitations of a variable stiffness actuator for use in prosthetic limbs[J]. Mechanism and Machine Theory,1999, 34(1):7-25. [44] TONIETTI G, SCHIAVI R, BICCHI A. Design and control of a variable stiffness actuator for safe and fast physical human/robot interaction[C]//IEEE International Conference on Robotics and Automation, Barcelona, Spain:IEEE, 2005:526-531. [45] PETIT F, FRIEDL W, HOPPNER H, et al. Analysis and synthesis of the bidirectional antagonistic variable stiffness mechanism[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(2):684-695. [46] HURST J W, CHESTNUTT J E, RIZZI A A. An actuator with physically variable stiffness for highly dynamic legged locomotion[C]//IEEE International Conference on Robotics and Automation, New Orleans, LA:IEEE, 2004:4662-4667. [47] EIBERGER O, HADDADIN S, WEIS M, et al. On joint design with intrinsic variable compliance:Derivation of the DLR QA-joint[C]//IEEE International Conference on Robotics and Automation, Anchorage, Alaska, USA:IEEE, 2010:1687-1694. [48] GROOTHUIS S S, RUSTICELLI G, ZUCCHELLI A, et al. The vsaUT-Ⅱ:A novel rotational variable stiffness actuator[C]//Robotics and Automation (ICRA), 2012 IEEE International Conference on, Saint Paul, MN:IEEE, 2012:3355-3360. [49] JAFARI A, TSAGARAKIS N G, VANDERBORGHT B, et al. A novel actuator with adjustable stiffness (AwAS)[C]//2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nakao Manabu:IEEE, 2010:4201-4206. [50] JAFARI A, TSAGARAKIS N G, CALDWELL D G. A novel intrinsically energy efficient actuator with adjustable stiffness (AwAS)[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(1):355-365. [51] VISSER L C, CARLONI R, UNAL R, et al. Modeling and design of energy efficient variable stiffness actuators[C]//IEEE International Conference on Robotics and Automation, Anchorage, AK:IEEE, 2010:3273-3278. [52] KIM B S. Design and control of a variable stiffness actuator based on adjustable moment arm[J]. IEEE Transactions on Robotics, 2012, 28(5):1145-1151. [53] TSAGARAKIS N G, IRENE S, CALDWELL D G. A new variable stiffness actuator (CompAct-VSA):Design and modelling[C]//2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA:IEEE, 2011:378-383. [54] JAFARI A, TSAGARAKIS N G, SARDELLITTI I, et al. A new actuator with adjustable stiffness based on a variable ratio lever mechanism[J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(1):55-63. [55] SARDELLITTI I, MEDRANO-CERDA G, TSAGARAKIS N G, et al. A position and stiffness control strategy for variable stiffness actuators[C]//IEEE International Conference on Robotics and Automation, Saint Paul, MN:IEEE, 2012:2785-2791. [56] MATTEO F, EAMON B, STEFANO S, et al. The mVSA-UT:A miniaturized differential mechanism for a continuous rotational variable stiffness actuator[C]//20124th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Rome, Italy:IEEE, 2012:1943-1948. [57] QUY H V, ARYANANDA L, SHEIKH F I, et al. A novel mechanism for varying stiffness via changing transmission angle[C]//IEEE International Conference on Robotics and Automation, Shanghai:IEEE, 2011:5076-5081. [58] GROOTHUIS S, CARLONI R, STRAMIGIOLI S. A novel variable stiffness mechanism capable of an infinite stiffness range and unlimited decoupled output motion[J]. Actuators, 2014, 3(2):107-123. [59] HOLLANDER K W, SUGAR T G, HERRING D E. Adjustable robotic tendon using a ‘Jack Spring’TM[C]//9th International Conference on Rehabilitation Robotics, Chicago, IL, USA:IEEE, 2005:113-118. [60] MORITA T, SUGANO S. Design and development of a new robot joint using a mechanical impedance adjuster[C]//IEEE International Conference on Robotics and Automation, Nagoya:IEEE, 1995:2469-2475. [61] REN-JENG W, PANG H H. Mechanically stiffnessadjustable actuator using a leaf spring for safe physical human-robot interaction[J]. MECHANIKA, 2012, 18(1):77-83. [62] TAO Y, WANG T, WANG Y, et al. Design and modeling of a new variable stiffness robot joint[C]//Multisensor Fusion and Information Integration for Intelligent Systems (MFI), 2014 International Conference on, Beijing:IEEE, 2014:1-5. [63] JUNHO C, SEONGHUN H, WOOSUB L, et al. A robot joint with variable stiffness using leaf springs[J]. IEEE Transactions on Robotics, 2011, 27(2):229-238. [64] JUNHO C, SEONGHUN H, WOOSUB L, et al. A variable stiffness joint using leaf springs for robot manipulators[C]//IEEE International Conference on Robotics and Automation, Kobe, Japan:IEEE, 2009:4363-4368. [65] SCHIMMELS J M, GARCES D R. The arched flexure VSA:A compact variable stiffness actuator with large stiffness range[C]//IEEE International Conference on Robotics and Automation, Seattle, WA:IEEE, 2015:220-225. [66] 王伟,刘立冬,魏来,等. 柔性齿条式变刚度关节驱动器设计与研究[J]. 机械工程学报, 2016, 52(1):26-33. WANG Wei, LIU Lidong, WEI Lai, et al. Design and research of rack-based variable stiffness actuator[J]. Journal of Mechanical Engineering, 2016, 52(1):26-33. [67] 何广平, 李士明. 可调刚度弹性机器人关节研究与设计[J]. 北方工业大学学报. 2012, 24(3):37-41. HE Guangping, LI Shiming. Research and design of adjustable stiffness elastic robots joint[J]. Journal of North China University of Technology, 2012, 24(3):37-41. [68] KAWAMURA S, YAMAMOTO T, ISHIDA D, et al. Development of passive elements with variable mechanical impedance for wearable robots[C]//IEEE International Conference on Robotics and Automation, Wasington, D.C:IEEE, 2002:248-253. [69] MIGLIORE S A, BROWN E A, DEWEERTH S P. biologically inspired joint stiffness control[C]//IEEE International Conference on Robotics and Automation, Barcelona, Spain:IEEE, 2005:4508-4513. [70] PALLI G, GIOVANNI B, CLAUDIO M, et al. Design of a variable stiffness actuator based on flexures[J]. Journal of Mechanisms and Robotics-transactions of, 2011, 3(3):34501. [71] PALLI G, MELCHIORRI C, GIOVANNI B, et al. Design and modeling of variable stiffness joints based on compliant flexures[C]//34th Annual Mechanisms and Robotics Conference, Montreal,Quebec, Canada:ASME, 2010:1069-1078. [72] ACCOTO D, CARPINO G, SERGI F, et al. Design and characterization of a novel high-power series elastic actuator for a lower limb orthosis[J]. International Journal of Advanced Robotic Systems, 2013, 10(359):1-12. [73] MATHIJSSEN G, LEFEBER D, VANDERBORGHT B. Variable recruitment of parallel elastic elements:Series-parallel elastic actuators (SPEA) with dephased mutilated gears[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(2):594-602. [74] METTIN U, LA HERA P X, FREIDOVICH L B, et al. Parallel elastic actuators as a control tool for preplanned trajectories of underactuated mechanical systems[J]. International Journal of Robotics Research, 2010, 29(9):1186-1198. [75] AU S K, WEBER J, HERR H. Powered ankle-foot prosthesis improves walking metabolic economy[J]. IEEE Transactions on Robotics, 2009, 25(1):51-66. [76] CUI Z, YANG H, QIAN D, et al. Development of a novel variable stiffness actuator with automatic rigidity/compliance switching[C]//IEEE International Conference on Robotics and Biomimetics, Bali, Indonesia:IEEE, 2014:326-331. |
[1] | 王新庆, 王新, 石念岭, 陈兆芃. 基于期望动力学的柔性关节控制器设计[J]. 机械工程学报, 2023, 59(3): 38-45. |
[2] | 窦昆鸿, 潘晟, 罗翔. 机器人柔性踝横滚的快慢变切换控制方法[J]. 机械工程学报, 2022, 58(13): 81-88. |
[3] | 曹晟阁, 于靖军, 潘杰, 裴旭. 滚动接触柔性连续体机器人的设计与运动能力分析[J]. 机械工程学报, 2021, 57(19): 21-29. |
[4] | 曲祥旭, 曹东兴, 张姗. 一种扭簧变刚度柔性关节的设计与研究[J]. 机械工程学报, 2021, 57(13): 114-123. |
[5] | 史延雷, 张小俊, 张明路. 主-被动复合变刚度柔性关节设计与分析[J]. 机械工程学报, 2018, 54(3): 55-62. |
[6] | 刘畅, 毕树生, 赵宏哲, 周晓东. 基于折叠式串联簧片的可调刚度致动器设计[J]. 机械工程学报, 2017, 53(17): 70-77. |
[7] | 谢立敏,陈力. 漂浮基柔性关节、柔性臂空间机器人动力学建模、饱和鲁棒模糊滑模控制及双重柔性振动主动抑制[J]. 机械工程学报, 2015, 51(1): 76-82. |
[8] | 游斌弟;赵阳;赵志刚;田浩. 柔性关节动态误差对星载天线扰动及控制[J]. , 2011, 47(5): 85-92. |
[9] | 孙汉旭;褚明;贾庆轩. 柔性关节摩擦和不确定补偿的小波神经——鲁棒复合控制[J]. , 2010, 46(13): 68-75. |
[10] | 华卫江;章定国. 柔性机器人系统碰撞动力学建模[J]. , 2007, 43(12): 222-228. |
[11] | 邱志成. 刚柔耦合系统的振动主动控制[J]. , 2006, 42(11): 26-33. |
[12] | 隋春平;张波;赵明扬;刘红军. 一种3自由度并联柔索驱动柔性操作臂的建模与控制[J]. , 2005, 41(6): 60-65. |
[13] | 高志慧;贠超;边宇枢. 柔性机器人动力奇异问题的研究[J]. , 2004, 40(11): 64-69. |
[14] | 张成新;余跃庆. 具有关节柔性和臂柔性的机器人操作受限物体的动力学建模[J]. , 2003, 39(6): 9-12. |
[15] | 张成新;余跃庆. 柔性机器人协调操作的动力学建模与分析[J]. , 2003, 39(5): 49-54. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||