• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2018, Vol. 54 ›› Issue (4): 231-237.doi: 10.3901/JME.2018.04.231

• 振动与噪声 • 上一篇    下一篇

高速列车受电弓气动噪声特性研究

刘加利1, 于梦阁2, 田爱琴1, 杜健1, 张继业3   

  1. 1. 中车青岛四方机车车辆股份有限公司技术中心 青岛 266111;
    2. 青岛大学机电工程学院 青岛 266071;
    3. 西南交通大学牵引动力国家重点实验室 成都 610031
  • 收稿日期:2017-04-07 修回日期:2017-12-05 发布日期:2018-02-20
  • 通讯作者: 于梦阁(通信作者),女,1985年出生,博士,副教授。主要研究方向为车辆空气动力学,车辆系统动力学,多目标优化设计。E-mail:yumengge0627@163.com
  • 作者简介:刘加利,男,1985年出生,博士,高级工程师。主要研究方向为高速列车气动噪声。E-mail:liujiali@cqsf.com
  • 基金资助:
    国家重点研发计划(2016YFB1200504-F)、国家自然科学基金(51705267)、中国铁路总公司科技研究开发计划(2015J009-D)和山东省自然科学基金(ZR2014EEP002)资助项目

Study on the Aerodynamic Noise Characteristics of the Pantograph of the High-speed Train

LIU Jiali1, YU Mengge2, TIAN Aiqin1, DU Jian1, ZHANG Jiye3   

  1. 1. Research and Development Center, CRRC Qingdao Sifang Co. Ltd., Qingdao 266111;
    2. College of Mechanical and Electronic Engineering, Qingdao University, Qingdao 266071;
    3. State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031
  • Received:2017-04-07 Revised:2017-12-05 Published:2018-02-20

摘要: 为研究高速列车受电弓气动噪声特性,利用大涡模拟方法计算高速列车受电弓表面脉动压力,并将其作为远场声场计算输入;利用Lighthill声学比拟理论计算高速列车受电弓远场气动噪声,并研究其声压级特性、频谱特性及速度依赖规律。计算结果表明:高速列车受电弓气动噪声的声压级在纵向方向上变化较大,最大声压级位于受电弓后方横截面上;声压级在距轨面0.5~5.0 m的垂向方向上变化较小,最大差异在0.5 dB以内;声压级在距轨道中心线7.5~30 m的横向方向上发生衰减,且不同车速下声压级衰减12.0~12.3 dB。通过频谱分析发现,受电弓气动噪声的主要能量分布在100~700 Hz,主要频率随车速增加往高频部分移动;受电弓气动噪声的功率谱密度随测点距轨道中心线距离的增加显著减小,但其主要频率基本不发生变化。受电弓气动噪声声压级随着车速的增加而显著增大,且与车速的对数近似成线性关系。

关键词: 大涡模拟, 脉动压力, 气动噪声, 声压级, 受电弓

Abstract: In order to study the aerodynamic noise characteristics of the pantograph of the high-speed train, the fluctuating pressure on the pantograph surface of the high-speed train, which is the computation input of the far-field aerodynamic noise, is computed using the large eddy simulation method. The far-field aerodynamic noise of the pantograph of the high-speed train is computed using the Lighthill's acoustics analogy theory. Then, the sound pressure level characteristics, spectral characteristics and the speed dependence law of the aerodynamic noise of the pantograph of the high-speed train are studied. Computation results show that the sound pressure level of the aerodynamic noise of the pantograph of the high-speed train varies greatly in longitudinal dimension with the maximum sound pressure level appearing in the cross section behind the pantograph. The sound pressure level varies little in the vertical dimension of 0.5~5.0 m above the rail surface, and the maximum difference of the sound pressure level for the same train speed is less than 0.5 dB. The sound pressure level decays in the lateral dimension of 7.5~30 m away from the track centerline, and it decays about 12.0~12.3 dB for a variety of train speed. Spectrum analysis shows that the main energy of aerodynamic noise of the pantograph distributes between 100~700 Hz. The main frequency of the aerodynamic noise of the pantograph moves to a higher frequency range with the increasing of the train speed. The power spectral density of the aerodynamic noise of the pantograph decreases quickly when the measure point moves away from the track centerline, while the main frequency has little change. The sound pressure level of the aerodynamic noise of the pantograph increases significantly with the increasing of the train speed, and has a linear relationship with the logarithm of the train speed.

Key words: aerodynamic noise, fluctuating pressure, large eddy simulation, pantograph, sound pressure level

中图分类号: