• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2018, Vol. 54 ›› Issue (3): 148-159.doi: 10.3901/JME.2018.03.148

• 数字化设计与制造 • 上一篇    下一篇

扫码分享

基于遗传变邻域混合算法的带交货期的单机车间逆调度方法

牟健慧1, 潘全科2, 牟建彩3, 徐汝峰1, 于珊珊1   

  1. 1. 山东理工大学机械工程学院 淄博 255000;
    2. 华中科技大学数字制造装备与技术国家重点实验室 武汉 430074;
    3. 华立科技职业学院 广州 510000
  • 收稿日期:2016-12-10 修回日期:2017-08-18 出版日期:2018-02-05 发布日期:2018-02-05
  • 通讯作者: 牟健慧(通信作者),女,1983年出生,博士研究生。主要研究方向为车间调度与优化。E-mail:mjhcr@163.com
  • 基金资助:
    国家自然科学基金(51605267)、山东省自然科学基金(ZR2016EEQ07)和山东省高等学校科技计划(J16LB04)资助项目。

Research on Single-machine Inverse Scheduling Methods with Due-dates Based on Variable Neighborhood Search Hybrid Algorithm

MOU Jianhui1, PAN Quanke2, MOU Jiancai3, XU Rufeng1, YU Shanshan1   

  1. 1. School of Mechanical Engineering, Shandong University of Technology, Zibo 255000;
    2. State Key Lab of Digital Manufacturing Equipment and Technology, Huazhong University of Science & Technology, Wuhan 430074;
    3. Huali Science and Technology College, Guangzhou 510000
  • Received:2016-12-10 Revised:2017-08-18 Online:2018-02-05 Published:2018-02-05

摘要: 针对带交货期的单机逆调度问题,建立以最小化系统调整为目标函数的单机逆调度数学优化模型;利用互补性能,采用串行、并行和嵌入等结构,将遗传算法与变邻域搜索算法相结合,设计出遗传-变邻域搜索算法、遗传-变邻域搜索交替算法和遗传-变邻域搜索协同算法3种混合算法。为产生逆调度激发机制,采用非最优调度法,将随机初始化与局部初始化进行结合,创造逆调度环境;此外,为提高算法的局部搜索能力,基于交叉变异操作等思想来构建四种搜索邻域,通过邻域结构的切换,加强局部搜索能力;最后,将提出的混合算法用于求解不同规模的问题实例,与其他算法的求解结果进行比较,证明提出的混合算法是可行的和有效的。

关键词: 不确定加工参数, 车间调度, 混合算法, 逆调度

Abstract: Aiming at the single-machine inverse scheduling problem with due-dates(SISPD), a mathematical model with the minimal adjustment of system as a target is constructed. Using complementary properties, three hybrid algorithms combining genetic algorithm with variable neighborhood search algorithm are proposed by using serial, parallel and embedded structure. In the algorithm, a double scheduling method which combines heuristic non-optimal scheduling method with random initial population and local initial population is designed to construct inverse scheduling mechanism. Then, based on the features of problem and encoding, four neighborhood structures are put forward to improve the local search ability by changing the neighborhood structure. Finally, the proposed algorithms are used to solve numerical instances. The computational results show that the proposed method could solve SISPD effectively.

Key words: hybrid algorithm, inverse scheduling, shop scheduling, uncertain processing parameter

中图分类号: