Journal of Mechanical Engineering ›› 2024, Vol. 60 ›› Issue (24): 127-141.doi: 10.3901/JME.2024.24.127
Previous Articles Next Articles
AI Cheng1, ZHANG Long1, GUO Min2, HUANG Taiwen2, LIU Lin2
Received:
2024-03-12
Revised:
2024-11-05
Online:
2024-12-20
Published:
2025-02-01
CLC Number:
AI Cheng, ZHANG Long, GUO Min, HUANG Taiwen, LIU Lin. Research Progress of Ni-based Single Crystal Superalloy Castings Prepared by Liquid Metal Cooling Technique[J]. Journal of Mechanical Engineering, 2024, 60(24): 127-141.
[1] 师昌绪,仲增墉. 中国高温合金五十年[M]. 北京:冶金工业出版社,2006. SHI Changxu,ZHONG Zengyong. Fifty years of superalloys in China[M]. Beijing:Metallurgical Industry Press,2006. [2] 周瑞发,韩雅芳,李树索. 高温结构材料[M]. 北京:国防工业出版社,2006. ZHOU Ruifa,HAN Yafang,LI Shusuo. High temperature structural materials[M]. Beijing:National Defense Industry Press,2006. [3] 傅恒志,郭景杰,刘林,等. 先进材料定向凝固[M]. 北京:科学出版社,2008. FU Hengzhi,GUO Jingjie,LIU Lin,et al. Directional solidification of advanced materials[M]. Beijing:Science Press,2008. [4] REED R C. The superalloys:Fundamentals and applications[M]. Cambridge:Cambridge University Press,2008. [5] LIU L,HUANG T,QU M,et al. High thermal gradient directional solidification and its application in the processing of nickel-based superalloys[J]. Journal of Materials Processing Technology,2010,210(1):159-165. [6] WILSON B,CUTLER E,FUCHS G. Effect of solidification parameters on the microstructures and properties of CMSX-10[J]. Materials Science and Engineering:A,2008,479(1-2):356-364. [7] POLLOCK T,MURPHY W. The breakdown of single-crystal solidification in high refractory nickel-base alloys[J]. Metallurgical and Materials Transactions A,1996,27(4):1081-1094. [8] 刘晓功,饶洋,刘培元,等. 温度梯度对籽晶法制备镍基单晶高温合金DD6凝固组织的影响[J]. 铸造,2022(4):415-419. LIU Xiaogong,RAO Yang,LIU Peiyuan,et al. Effect of temperature gradient on solidification microstructure of seeding preparation process for Ni-based single crystal superalloy DD6[J]. Foundry,2022(4):415-419. [9] 郭喜平,傅恒志,孙家华. 高温度梯度改进单晶高温合金的性能[J]. 材料研究学报,1995,9(3):213-218. GUO Xiping,FU Hengzhi,SUN Jiahua. Influence of high thermal gradient casting on the microstructure and stress rupture life of single crystal NASAIR100[J]. Chinese Journal of Material Research,1995,9(3):213-218. [10] ZHANG H,PEI Y,LI S,et al. Effect of process parameters on microstructures and properties of DZ125 superalloy solidified by LMC[J]. Materials Research Innovations,2014,18(Suppl. 4):S4-385-S4-9. [11] 黄乾尧,李汉康. 高温合金[M]. 北京:冶金工业出版社,2000. HUANG Qianyao,LI Hankang. Superalloys[M]. Beijing:Metallurgical Industry Press,2000. [12] 闫学伟. 重燃叶片定向凝固过程多尺度数值模拟及凝固缺陷预测[D]. 北京:清华大学,2017. YAN Xuewei. Multi-scale numerical simulation and solidified defects prediction of industrial gas turbine blade casting during directional solidification[D]. Beijing:Tsinghua University,2017. [13] 申健. 一种镍基单晶高温合金的组织与性能[D]. 沈阳:沈阳工业大学,2013. SHEN Jian. Microstructures and properties of a nickel base single crystal superalloy[D]. Shenyang:Shenyang University of Technology,2013. [14] KONTER M,THUMANN M. Materials and manufacturing of advanced industrial gas turbine components[J]. Journal of Materials Processing Technology,2001,117(3):386-390. [15] ELLIOTT A J. Directional solidification of large cross-section nickel-base superalloy castings via liquid-metal cooling[D]. Michigan:University of Michigan,2005. [16] ZHANG J,LOU L. Directional solidification assisted by liquid metal cooling[J]. Journal of Materials Science & Technology,2007,23(3):289-300. [17] GIAMEI A,TSCHINKEL J. Liquid metal cooling:A new solidification technique[J]. Metallurgical Transactions A,1976,7(9):1427-1434. [18] 刘金洪,刘林,黄太文,等. 液态金属冷却定向凝固设备的研制[J]. 铸造,2010(8):822-825. LIU Jinhong,LIU Lin,HUANG Taiwen,et al. Development of directional solidification equipment with liquid metal cooling[J]. Foundry,2010(8):822-825. [19] 杜玉俊,沈军,熊义龙,等. 电磁约束成形的技术特点及其发展前景[J]. 材料导报,2012,26(7):118-122. DU Yujun,SHEN Jun,XIONG Yilong,et al. Technical features and prospects of the electromagnetic confinement and shaping[J]. Materials Reports,2012,26(7):118-122. [20] 杨森,黄卫东,刘文今,等. 激光超高温度梯度快速定向凝固研究[J]. 中国激光,2002(5):475-479. YANG Sen,HUANG Weidong ,LIU Wenjin,et al. Research on laser rapid directional solidification with ultra-high temperature gradient[J]. Chinese Journal of Lasers,2002(5):475-479. [21] 卢玉章,熊英,彭建强,等. 重型燃机定向结晶空心叶片凝固过程的实验与模拟[J]. 材料工程,2018,46(1):8-15. LU Yuzhang,XIONG Ying,PENG Jianqiang,et al. Simulation and experiment of solidification process for directionally solidified industrial gas turbine hollow blades[J]. Journal of Materials Engineering,2018,46(1):8-15. [22] WHITESELL H,OVERFELT R. Influence of solidification variables on the microstructure,macrosegregation,and porosity of directionally solidified Mar-M247[J]. Materials Science and Engineering:A,2001,318(1-2):264-276. [23] BRUNDIDGE C L,VAN DRASEK D,WANG B,et al. Structure refinement by a liquid metal cooling solidification process for single-crystal Nickel-base superalloys[J]. Metallurgical and Materials Transactions A,2012,43(3):965-976. [24] KURZ W,BEZENçON C,GäUMANN M. Columnar to equiaxed transition in solidification processing[J]. Science and Technology of Advanced Materials,2001,2(1):185-185. [25] 刘刚,刘林,赵新宝,等. 一种镍基单晶高温合金的高温度梯度定向凝固组织及枝晶偏析[J]. 金属学报,2010,46(1):77-83. LIU Gang,LIU Lin,ZHAO XinBao,et al. Microstructure and microsegregation in a Ni-based single crystal superalloy directionally solidified under high thermal gradient[J]. Acta Metallurgica Sinica,2010,46(1):77-83. [26] 刘晓功,饶洋,刘培元,等. 温度梯度对籽晶法制备镍基单晶高温合金DD6凝固组织的影响[J]. 铸造,2022,71(4):415-419. LIU Xiaogong,RAO Yang,LIU Peiyuan,et al. Effect of temperature gradient on solidification microstructure of seeding preparation process for Ni-based single crystal superalloy DD6[J]. Foundry,2022,71(4):415-419. [27] 肖旋,高慈,秦学智,等. 抽拉速率对定向凝固DZ483合金的微观组织及力学性能的影响[J]. 中国有色金属学报,2013,23(10):2808-2816. XIAO Xuan,GAO Ci,QIN Xuezhi,et al. Effects of withdrawal rate on microstructures and mechanical properties of directionally solidified DZ483 superalloy[J]. The Chinese Journal of Nonferrous Metals,2013,23(10):2808-2816. [28] 李双明,杜炜,张军,等. CMSX-2单晶高温合金高梯度定向凝固下过渡区的组织演化特征[J]. 金属学报,2002(11):1195-1198. LI Shuangming,DU Wei,ZHANG Jun,et al. Solidified microstructure evolution of transitional zone in cmsx-2 single crystal superalloy under high-temperature gradient directional solidification[J]. Acta Metallurgica Sinica,2002(11):1195-1198. [29] 陈晶阳,吴文津,李青,等. 采用低温度梯度HRS工艺制备的镍基单晶高温合金雀斑组织[J]. 中国有色金属学报,2018,28(12):2494-2498. CHEN Jingyang,WU Wenjin,LI Qing,et al. Freckle of Ni-based single crystal superalloy prepared by low thermal gradient HRS process[J]. The Chinese Journal of Nonferrous Metals,2018,28(12):2494-2498. [30] 赵新宝,岳亮,夏万顺,等. 固溶处理对一种第四代镍基单晶高温合金微观组织和偏析的影响[J]. 电子显微学报,2020,39(5):462-469. ZHAO Xinbao,YUE Liang,XIA Wanshun,et al. The influence of solution treatment temperature on the microstructure and microsegregation of a fourth generation nickel-based single crystal superalloy[J]. Journal of Chinese Electron Microscopy Society,2020,39(5):462-469. [31] Hunt J D. Cellular and primary dendrite spacings[C/CD]//Solidification and Casting of Metals/Proc. Conf.,Sheffield,England,July 1977. [32] 艾诚,王国鑫,陈曦,等. 抽拉速率对一种Co-Al-W基单晶高温合金凝固行为的影响[J]. 中国有色金属学报,2023,33(6):1831-1841.AI Cheng,WANG Guoxin,CHEN Xi,et al. Effect of withdrawal rate on solidification behaviors of a Co-Al-W based single crystal superalloy[J]. The Chinese Journal of Nonferrous Metals,2023,33(6):1831-1841. [33] 闵志先,沈军,熊义龙,等. 高温度梯度定向凝固镍基高温合金DZ125的组织演化[J]. 金属学报,2011,47(4):397-402. MIN Zhixian,SHEN Jun,XIONG Yilong,et al. Microstructural evolution of directionally solidified Ni-based superalloy DZ125 under high temperature gradient[J]. Acta Metallurgica Sinica,2011,47(4):397-402. [34] 张卫国,刘林,黄太文,等. 定向凝固ZMLMC法温度梯度的测定及其对凝固组织的影响[J]. 铸造技术,2006(11):1165-1168. ZHANG Weiguo,LIU Lin,HUANG Taiwen,et al. Determining the temperature measurement of temperature gradient on ZMLMC directional solidification apparatus and the effect of temperature gradient on solidification microstructure[J]. Foundry Technology,2006(11):1165-1168. [35] LI L,OVERFELT R A. Influence of directional solidification variables on the cellular and primary dendrite arm spacings of PWA1484[J]. Journal of Materials Science,2002,37(16):3521-3532. [36] POLLOCK T M,MURPHY W H. The breakdown of single-crystal solidification in high refractory nickel-base alloys[J]. Metallurgical and Materials Transactions A,1996,27(4):1081-1094. [37] ELLIOTT A J,POLLOCK T M,TIN S,et al. Directional solidification of large superalloy castings with radiation and liquid-metal cooling:A comparative assessment[J]. Metallurgical and Materials Transactions A,2004,35(10):3221-3231. [38] LOHMüLLER A. Optimization of liquid metal cooling process and solidification process influenced by parameters[D]. Erlangen:Friedrich-alexander University of Erlangen-Nuremberg (FAU),2002. [39] LIU G,LIU L,ZHANG G J,et al. Microstructure and element segregation of Ni-Base superalloy casting with radiation and liquid-metal cooling [J]. Materials science forum,2015,816:608-612. [40] CLEMENS M L,PRICE A,BELLOWS R S. Advanced solidification processing of an industrial gas turbine engine component[J]. JOM,2003,55(3):27-31. [41] BALSONE S,FENG G,PETERSON L,et al. Microstructure and mechanical behavior of liquid metal cooled directionally solidified GTD-444[C]//Solidification Processes and Microstructures:A Symposium in Honor of Wilfried Kurz as held at the 2004 TMS Annual Meeting. 2004:77-83. [42] STEFANESCU D M. Science and engineering of casting solidification[M]. Berlin:Springer,2015. [43] 顾林喻,刘忠元,史正兴. 高梯度快速定向凝固下DZ22高温合金的显微偏析[J]. 中国有色金属学报,1996(2):112-115. GU Linyu,LIU Zhongyuan,SHI Zhengxin. Microsegregation of DZ22 superalloy under unidirectional solidification with high temperature gradient and rapid growth rate[J].The Chinese Journal of Nonferrous Metals,1996(2):112-115. [44] 李相伟,王莉,刘心刚,等. HRS和LMC工艺对第三代镍基单晶高温合金DD33中显微孔洞的影响[J]. 材料研究学报,2014,28(9):656-662. LI Xiangwei,WANG Li,LIU Xingang,et al. Microporosity reduction by liquid cooling process of a single crystal nickel based superalloy[J]. Chinese Journal of Materials Research,2014,28(9):656-662. [45] WILSON B,HICKMAN J,FUCHS G. The effect of solution heat treatment on a single-crystal Ni-based superalloy[J]. JOM,2003,55(3):35-40. [46] FUCHS G. Solution heat treatment response of a third generation single crystal Ni-base superalloy[J]. Materials Science and Engineering:A,2001,300(1-2):52-60. [47] 张琰斌. 第三代镍基单晶高温合金固溶处理研究及工艺优化[D]. 西安:西北工业大学,2018. ZHANG Yanbin. Study on the solution heat treatment and processing optimization of third generation ni-base single crystal superalloys[D]. Xi’an:Northwestern Polytechnical University,2018. [48] 于军伟,康茂东,刘雅辉,等. 镍基单晶高温合金微观孔洞缺陷研究进展[J]. 铸造技术,2018,39(11):2615-2619. YU Junwei,KANG Maodong,LIU Yahui,et al. Advances on micro-pore defect of single-crystal nickel-base superalloy[J]. Foundry Technology,2018,39(11):2615-2619. [49] LAMM M,SINGER R. The effect of casting conditions on the high-cycle fatigue properties of the single-crystal nickel-base superalloy PWA 1483[J]. Metallurgical and Materials Transactions A,2007,38(6):1177-1183. [50] LECOMTE-BECKERS J. Study of microporosity formation in nickel-base superalloys[J]. Metallurgical Transactions A,1988,19(9):2341-2348. [51] 石倩颖,李相辉,郑运荣,等. HRS和LMC工艺制备的两种镍基单晶高温合金铸态及固溶微孔的形成[J]. 金属学报,2012,48(10):1237-1247.SHI Qianying,LI Xianghui,ZHENG Yunrong,et al. Formation of solidification and homogenisation micropores in two single crystal superalloys produced by hrs and LMC processes[J]. Acta Metallurgica Sinica,2012,48(10):1237-1247. [52] BRUNDIDGE C,VAN DRASEK D,WANG B,et al. Structure refinement by a liquid metal cooling solidification process for single-crystal nickel-base superalloys[J]. Metallurgical and Materials Transactions A,2012,43(3):965-976. [53] SIGWORTH G K,WANG C. Mechanisms of porosity formation during solidification:A theoretical analysis[J]. Metallurgical Transactions B,1993,24(2):349-364. [54] BOKSTEIN B,EPISHIN A,LINK T,et al. Model for the porosity growth in single-crystal nickel-base superalloys during homogenization[J]. Scripta Materialia,2007,57(9):801-804. [55] LI X,WANG L,DONG J,et al. Evolution of micro-pores in a single-crystal nickel-based superalloy during solution heat treatment[J]. Metallurgical and Materials Transactions A,2017,48(6):2682-2686. [56] COPLEY S,GIAMEI A F,JOHNSON S,et al. The origin of freckles in unidirectionally solidified castings[J]. Metallurgical Transactions,1970,1(8):2193-2204. [57] AUBURTIN P,WANG T,COCKCROFT S,et al. Freckle formation and freckle criterion in superalloy castings[J]. Metallurgical and Materials Transactions B,2000,31(4):801-811. [58] TIN S,POLLOCK T,KING W. Carbon additions and grain defect formation in high refractory nickel-base single crystal superalloys[J]. Superalloys,2000,2000:201-210. [59] MA D X,ZHOU B,BÜHRIG-POLACZEK A. Investigation of freckle formation under various solidification conditions[J]. Advanced Materials Research,2011,278:428-433. [60] SCHADT R,WAGNER I,PREUHS J,et al. New aspects of freckle formation during single crystal solidification of CMSX-4[J]. Superalloys,2000,2000:211-218. [61] BECKERMANN C,GU J,BOETTINGER W J. Development of a freckle predictor via Rayleigh number method for single-crystal nickel-base superalloy castings[J]. Metallurgical and Materials Transactions A,2000,31(10):2545-2557. [62] 许庆彦,杨聪,闫学伟,等. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报,2019,55(9):1175-1184. XU Qingyan,YANG Cong,YAN Xuewei,et al. Development of numerical simulation in nickel-based superalloy turbine blade directional solidification[J]. Acta Metallurgica Sinica,2019,55(9):1175-1184. [63] 李亚峰,刘林,黄太文,等. 镍基单晶高温合金涡轮叶片缘板杂晶的研究进展[J]. 材料导报,2018,31(9):118-122. LI Yafeng,LIU Lin,HUANG Taiwen,et al. Research progress of stray grain formation in the platform of ni-base single crystal turbine blades[J]. Materials Reports,2018,31(9):118-122. [64] TER VEHN M M,DEDECKE D,PAUL U,et al. Undercooling related casting defects in single crystal turbine blades[J]. Superalloys,1996,1996:471-479. [65] 唐宁,孙长波,张航,等. 高温合金单晶叶片定向凝固过程的宏微观数值模拟[J]. 稀有金属材料与工程,2013,42(11):2298-2303. Tang Ning,Sun Changbo,Zhang Hang,et al. Macro and micro numerical simulation of directional solidification of super alloy SX turbine blade[J]. Rare Metal Materials and Engineering,2013,42(11):2298-2303. [66] 郭如峰,刘林,李亚峰,等. 液态金属冷却法制备DD403合金过程温度场和晶粒组织的数值模拟[J]. 铸造,2014,63(2):145-151. GUO Rufeng,LIU Lin,LI Yafeng,et al. Numerical simulation of temperature field and grain texture during casting single crystal superalloy DD403 with liquid metal cooling[J]. Foundry,2014,63(2):145-151. [67] 李亚峰. 镍基单晶高温合金涡轮叶片平台杂晶缺陷研究[D]. 西安:西北工业大学,2018. LI Yafeng. Study on stray grain formation in the platform of ni-based single crystal superalloys turbine blade[D]. Xi’an:Northwestern Polytechnical University,2018. [68] 卢玉章. 定向凝固过程工艺参数优化的数值模拟与实验研究[D]. 北京:中国科学院大学,2015. LU Yuzhang. Simulation and experimental study for parameter optimization in directional solidification process[D]. Beijing:University of Chinese Academy of Sciences,2015. [69] CHUBIN Y,LIN L,NING L,et al. Orientation characteristics of single crystal superalloys with different preparation methods[J]. Rare Metal Materials and Engineering,2017,46(4):912-916. [70] 张健,王莉,王栋,等. 镍基单晶高温合金的研发进展[J]. 金属学报,2019,55(9):1077-1094. ZHANG Jian,WANG Li,WANG Dong,et al. Recent progress in research and development of nickel-based single crystal superalloys[J]. Acta Metallurgica Sinica,2019,55(9):1077-1094. [71] MACKAY R A,MAIER R D. The influence of orientation on the stress rupture properties of nickel-base superalloy single crystals[J]. Metallurgical Transactions A,1982,13(10):1747-1754. [72] 郝红全. 单晶高温合金铸件的凝固行为及缺陷形成机制研究[D]. 北京:中国科学院大学,2013. HAO Hongquan. Investigation of the solidification behavior and the defects formation mechanisms of the single crystal castings[D]. Beijing:University of Chinese Academy of Sciences,2013. [73] GAO S,LIU L,WANG N,et al. Grain selection during casting Ni-base,single-crystal superalloys with spiral grain selector[J]. Metallurgical and Materials Transactions A,2012,43(10):3767-3775. [74] ARDAKANI M,D’SOUZA N,WAGNER A,et al. Competitive grain growth and texture evolution during directional solidification of superalloys[J]. TMS Superalloys,2000,10:219-228. [75] ESAKA H,SHINOZUKA K,TAMURA M. Analysis of single crystal casting process taking into account the shape of pigtail[J]. Materials Science and Engineering:A,2005,413:151-155. [76] DRESHFIELD R L,JOHNSON W A,MAURER G A. Effects of tin on microstructure and mechanical behavior of Inconel 718[C]//TMS-AIME Fall Meeting. 1984(E-2329). [77] SHEN J,XU Z,LU Y,et al. Reaction of Ni-based superalloy with liquid Sn during liquid-metal-cooled directional solidification[J]. Metallurgical and Materials Transactions A,2018,49(9):4003-4011. [78] 张健,申健,卢玉章,等. 燃气轮机用大型定向结晶铸件制备及组织与性能研究[J]. 金属学报,2010,46(11):1322-1326. ZHANG Jian,SHEN Jian,LU Yuzhang,et al. Processing,microstructure and mechanical properties of large directionally solidified castings for industrial gas turbine applications[J]. Acta Metallurgica Sinica,2010,46(11):1322-1326. [79] LIU L,HUANG T,ZHANG J,et al. Microstructure and stress rupture properties of single crystal superalloy CMSX-2 under high thermal gradient directional solidification[J]. Materials Letters,2007,61(1):227-230. [80] STEUER S,VILLECHAISE P,POLLOCK T,et al. Benefits of high gradient solidification for creep and low cycle fatigue of AM1 single crystal superalloy[J]. Materials Science and Engineering:A,2015,645:109-115. [81] STEIN C A,CERRONE A,OZTURK T,et al. Fatigue crack initiation,slip localization and twin boundaries in a nickel-based superalloy[J]. Current Opinion in Solid State and Materials Science,2014,18(4):244-252. [82] 闫晓军,聂景旭. 涡轮叶片疲劳[M]. 北京:科学出版社,2014. YAN Xiaojun,NIE Jingxu. Turbine blade fatigue[M]. Beijing:Science Press,2014. [83] 刘昌奎,杨胜,何玉怀,等. 单晶高温合金断裂特征[J]. 失效分析与预防,2010,5(4):225-230. LIU Changkui,YANG Sheng,HE Yuhuai,et al. Fracture features of single crystal superalloys[J]. Failure analysis and Prevention,2010,5(4):225-230. [84] 刘维维,唐定中,李嘉荣,等. 抽拉速率对DD6单晶高温合金650℃低周疲劳性能的影响[J]. 航空材料学报,2012,32(2):8-12. LIU Weiwei,TANG Dingzhong,LI Jiarong,et al. Effects of withdrawing rate on low cycle fatigue properties of single crystal superalloy DD6 at 650℃[J]. Journal of Aeronautical Materials,2012,32(2):8-12. [85] 史振学,李嘉荣,刘世忠,等. 第二代单晶高温合金的低周疲劳行为[J]. 材料热处理学报,2011,32(5):41-45. SHI Zhenxue,LI Jiarong,LIU Shizhong,et al. Low cycle fatigue behavior of a second generation single crystal superalloy DD6 at high temperature[J]. Transactions of Materials and Heat Treatment,2011,32(5):41-45. [86] 黄志伟,袁福河,王中光,等. M38镍基高温合金高温低周疲劳性能及断裂机制[J]. 金属学报,2007(10):1025-1030. HUANG Zhiwei,YUAN Fuhe,WANG Zhongguang,et al. Low cycle fatigue properties and fracture mechanisms of M38 nickel base superalloy at high temperature[J]. Acta Metallurgica Sinica,2007(10):1025-1030. [87] FAN Z D,WANG D,LIU C,et al. Low-cycle fatigue properties of Nickel-based superalloys processed by high-gradient directional solidification[J]. Acta Metallurgica Sinica(English Letters),2017,30(9):878-886. [88] 史振学,王效光,刘世忠,等. DD9单晶高温合金在800℃的高周旋弯疲劳性能[J]. 机械工程材料,2016,40(1):16-19,24. SHI Zhenxue,WANG Xiaoguang,LIU Shizhong,et al. Rotary bending high cycle fatigue properties of DD9 single crystal superalloy at 800℃[J]. Materials for Mechanical Engineering,2016,40(1):16-19,24. [89] 韩国明,张振兴,李金国,等. DD98M镍基单晶高温合金900℃高周疲劳行为[J]. 金属学报,2012,48(2):170-175. HAN Guoming,ZHANG Zhenxing,LI Jinguo,et al. High cycle fatigue behavior of a nickel-based single crystal superalloy DD98m at 900℃[J]. Acta metallurgica Sinica,2012,48(2):170-175. [90] 黄亚奇,王栋,卢玉章,等. 第一代单晶高温合金中温高应力幅下的疲劳裂纹萌生行为[J]. 材料研究学报,2021,35(7):510-516. HUANG Yaqi,WANG Dong,LU Yuzhang,et al. Fatigue crack initiation behavior at intermediate temperature under high stress amplitude for single crystal superalloy DD413[J]. Chinese Journal of Materials Research,2021,35(7):510-516. [91] WASSON A J,FUCHS G E. The effect of carbide morphologies on elevated temperature tensile and fatigue behavior of a modified single crystal Ni-base superalloy[C]//Proceeding at Conference,Superalloy. 2008:489-497. [92] 李嘉荣,谢洪吉,韩梅,等. 第二代单晶高温合金高周疲劳行为研究[J]. 金属学报,2019,55(9):1195-1203. LI Jiarong,XIE Hongji,HAN Mei,et al. High cycle fatigue behavior of second generation single crystal superalloy[J]. Acta Metallurgica Sinica,2019,55(9):1195-1203. [93] FRITZEMEIER L. The influence of high thermal gradient casting,hot isostatic pressing and alternate heat treatment on the structure and properties of a single crystal nickel base superalloy[J]. Superalloys,1988,1988:265-274. |
[1] | WEN Qiuling, YANG Ye, HUANG Hui, HUANG Guoqin, HU Zhongwei, CHEN Jinhong, WANG Hui, WU Xian. Review of Research Progress in Laser-based Hybrid Machining of Hard and Brittle Materials [J]. Journal of Mechanical Engineering, 2024, 60(9): 168-188. |
[2] | KONG Ling, WANG Yuhui, Yang Haokun, PENG Yan. Research Situation of Service Performance of Fe-Mn-Al-C Austenitic Low Density Steel [J]. Journal of Mechanical Engineering, 2024, 60(8): 34-47. |
[3] | REN Zhiying, HUANG Zihao, FANG Rongzheng, WANG Qinwei, MO Jiliang, Qin Hongling. Study on Thermomechanical Properties of Metal-rubber Disordered Lattice Interpenetrating Structures [J]. Journal of Mechanical Engineering, 2024, 60(8): 165-175. |
[4] | LI Li, WANG Yixuan, LUO Fen, ZHANG Wentao, ZHAO Wei, LI Xiaoqiang. Effect of Brazing Time on TiAl Joint Brazed with TiH2-65Ni+TiB2 Filler [J]. Journal of Mechanical Engineering, 2024, 60(8): 176-185. |
[5] | GU Yufen, LU Na, SHI Yu, SUN Qingling. Microstructure Characteristics of 16MnDR Steel Welded Joint and Its Corrosion Behavior in Hydrofluoric Acid Environment [J]. Journal of Mechanical Engineering, 2024, 60(8): 196-203. |
[6] | CHEN Wei, ZHAO Jie, ZHU Libin, CAO Haibo. Research Progress on Additive Manufacturing of Low Activation Steels [J]. Journal of Mechanical Engineering, 2024, 60(7): 312-333. |
[7] | ZHENG Yang, ZHAO Zihao, LIU Wei, YU Zhengzhe, NIU Wei, LEI Yiwen, SUN Ronglu. Research Progress in High-performance Mg Alloys Prepared by Additive Manufacturing [J]. Journal of Mechanical Engineering, 2024, 60(7): 385-400. |
[8] | SONG Boxue, WANG Zisheng, CHEN Keqiang, JIANG Xingyu, YU Tianbiao, LIU Weijun, YANG Guozhe. Effect of Melting and Solidification Behavior and Dendrite Morphology of DED Melt Pool on Tensile Strength [J]. Journal of Mechanical Engineering, 2024, 60(7): 411-424. |
[9] | LI Kun, JI Chen, BAI Shengwen, JIANG Bin, PAN Fusheng. Research Status and Prospects of Wire-arc Additive Manufacturing Technology for High-performance Magnesium Alloys [J]. Journal of Mechanical Engineering, 2024, 60(7): 289-311. |
[10] | BAO Xinyu, MA Yonglin, CHENG Qiao, SU Yihui, WANG Jie, XING Shuqing. Effect of the Pulsed Magnetic Melt Treatment on Solidification Structure and Mechanics Performance of the Direct-chilling Casting Al-Si-Mg-Cu-Ni Alloy [J]. Journal of Mechanical Engineering, 2024, 60(6): 279-286. |
[11] | ZHOU Tian, CAI Lixun, HAN Guangzhao. Novel Flat-SPT Method for Obtaining Mechanical Properties of Ductile Materials and Its Application [J]. Journal of Mechanical Engineering, 2024, 60(4): 316-325. |
[12] | CUI Guihan, YANG Chunli. Strengthening and Toughening Mechanism of Weld Metals on GMAW-P of High Strength and High Toughness Welding Wire [J]. Journal of Mechanical Engineering, 2024, 60(4): 326-334. |
[13] | MA Yixing, YANG Yutao, GUAN Xiaohu, YANG Qi, ZHAO Tongxin. Microstructure and Interfacial Bonding Property of a Hot-roll-bonded TWIP/IF Steel Composite Plate [J]. Journal of Mechanical Engineering, 2024, 60(4): 345-356. |
[14] | GAO Qiang, WANG Jian, ZHANG Yan, ZHENG Xuyang, LÜ Hao, YIN Guodong. Topology Optimization Approaches and Its Application and Prospect in Transportation Engineering [J]. Journal of Mechanical Engineering, 2024, 60(4): 369-390. |
[15] | WEI Xinpeng, WU Xuelian, WU Chengzhe, SUN Wanjie, DING Jianxiang, BAI Xiaoping, LIU Dongming, ZHANG Shihong, REN Wanbin, SUN Zhengming. Nano-mechanical Degradation Behavior and Mechanism of Ag/Ti2SnC Composite Electrical Contact Materials During Arc Erosion [J]. Journal of Mechanical Engineering, 2024, 60(24): 163-176. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||