Journal of Mechanical Engineering ›› 2024, Vol. 60 ›› Issue (22): 1-20.doi: 10.3901/JME.2024.22.001
Previous Articles Next Articles
GU Lei1, WANG Pengcheng1, YAN Yaotian2, CHEN Haiyan1, LI Wenya1
Received:
2024-05-11
Revised:
2024-09-04
Online:
2024-11-20
Published:
2025-01-02
About author:
10.3901/JME.2024.22.001
CLC Number:
GU Lei, WANG Pengcheng, YAN Yaotian, CHEN Haiyan, LI Wenya. Review on Negative Expansion Materials in Composite Materials and Brazing[J]. Journal of Mechanical Engineering, 2024, 60(22): 1-20.
[1] 王献立,付林杰,许坤. 负热膨胀材料的研究及应用[J]. 信息记录材料,2018,19(12):38-39. WANG Xianli,FU Linjie,XU Kun. Developments in study and applying of negative thermal expansion materials[J]. Information Recording Materials,2018,19(12):38-39. [2] 程永光. A2M3O12系列负热膨胀材料的吸水性、相变和光学性能研究[D]. 郑州:郑州大学,2017. CHENG Yongguang. Hygroscopicity,phase transition and optical property of A2M3O12 family[D]. Zhengzhou:Zhengzhou University,2017. [3] 徐滨士,李长久,刘世参,等. 表面工程与热喷涂技术及其发展[J]. 中国表面工程,1998,11(1):3-9. XU Binshi,LI Changjiu,LIU Shican,et al. Surface engineering and thermal spraying technology and their developments[J]. China Surface Engineering,1998,11(1):3-9. [4] 刘亚明. 几种典型材料负膨胀机理的第一性原理研究[D]. 郑州:郑州大学,2016. LIU Yaming. First-principles study of mechanism of several typical negative thermal expansion compounds[D]. Zhengzhou:Zhengzhou University,2016. [5] 刘红亮. GH4738/GH3536异种合金钎焊连接及焊后热处理的工艺与机理研究[D]. 北京:北京科技大学,2023. LIU Hongliang. Process and mechanism related to the brazing cycle and postbrazing heat treatment of the GH4738/GH3536 dissimilar superalloys[D]. Beijing:University of Science and Technology Beijing,2023. [6] 汤鑫,张杰,马天宝. 颗粒增强金属基复合材料界面微观结构和性能研究进展[J]. 中国表面工程,2022,35(3):16-30. TANG Xin,ZHANG Jie,MA Tianbao. Research progress on interfacial micro structure and properties of particle reinforced metal matrix composites[J]. China Surface Engineering,2022,35(3):16-30. [7] IDUSUYI N,OLAYINKA J I. Dry sliding wear characteristics of aluminium metal matrix composites:A brief overview[J]. Journal of Materials Research and Technology,2019,8(3):3338-3346. [8] JOSEPH J,KUMARAGURUBARAN B,Sathish S. Effect of MoS2 on the wear behavior of aluminium (AlMg0.5Si) composite[J]. Silicon,2020,12(6):1481-1489. [9] SELVAKUMAR N,NARAYANASAMY P. Optimization and effect of weight fraction of MoS2 on the tribological behavior of Mg-TiC-MoS2 hybrid composites[J]. Tribology Transactions,2016,59(4):733-747. [10] MISTRY J M,GOHIL P P. An overview of diversified reinforcement on aluminum metal matrix composites:Tribological aspects[J]. Proceedings of the Institution of Mechanical Engineers Part J Journal of Engineering Tribology,2016,231(3):399-421. [11] MAVHUNGU S T,AKINLABI E T,ONITIRI M A,et al. Aluminum matrix composites for industrial use[J]. Procedia Manufacturing,2017,7:178-182. [12] ZHOU Y X,ZHOU C,WANG Z J,et al. The effect of interface reaction on the thermal and mechanical properties of Mn3.2Zn0.5Sn0.3N/Al composites[J]. Ceramics International,2022,48(18):25826-25832. [13] 周畅. 基于零膨胀ZrW2O8/Al复合材料设计与表征[D]. 哈尔滨:哈尔滨工业大学,2017. ZHOU Chang. Design and characterization of ZrW2O8/Al composites based on zero thermal expansion[D]. Harbin:Harbin Institute of Technology,2017. [14] 曹贺. 近零膨胀反钙钛矿锰氮化物颗粒增强铝基复合材料的设计、制备与性能研究[D]. 上海:上海交通大学,2022. CAO He. Study on design,preparation and properties of near-zero thermal expansion antiperovskite manganese nitride particle reinforced aluminum matrix composites[D]. Shanghai:Shanghai Jiao Tong University,2022. [15] SEKULIĆ D P. Advances in brazing:Science,technology and applications[M]. Holland:Elsevier,2013. [16] 孙良博. 用于多孔与致密Si3N4陶瓷连接的LMAS微晶玻璃体系设计与微观机理[D]. 哈尔滨:哈尔滨工业大学,2021. SUN Liangbo. Design of LMAS glass-ceramic and micromechanisms for joining porous and dense Si3N4 ceramics[D]. Harbin:Harbin Institute of Technology,2021. [17] 张瑜,徐荣正,国旭明,等. 陶瓷基复合材料与金属异种材料焊接技术的研究现状[J]. 热加工工艺,2023,52(15):1-5,12. ZHANG Yu,XU Rongzheng,GUO Xuming,et al. Research progress of welding technology of ceramic matrix composites and metals heterogeneous materials[J]. Hot Working Technology,2023,52(15):1-5,12. [18] 王鹏程. 低膨胀Sc2W3O12复合钎料制备及Cf/SiC与GH3536钎焊机理研究[D]. 哈尔滨:哈尔滨工业大学,2023. WANG Pengcheng. Preparation of low thermal expansion Sc2W3O12 composite brazing filler and brazing mechanism of Cf/SiC composite and GH3536[D]. Harbin:Harbin Institute of Technology,2023. [19] 王刚,雍耀维,王乾,等. 负热膨胀材料及其在激光熔覆中的应用[J]. 激光与红外,2023,53(5):677-684. WANG Gang,YONG Yaowei,WANG Qian,et al. Negative thermal expansion materials and their applications in laser cladding[J]. Laser & Infrared,2023,53(5):677-684. [20] WATANABE H,TANI J,KIDO H,et al. Thermal expansion and mechanical properties of pure magnesium containing zirconium tungsten phosphate particles with negative thermal expansion[J]. Materials Science and Engineering:A,2008,494(1-2):291-298. [21] 刘文斌,田甜,徐家跃. 负热膨胀铁电晶体研究进展[J]. 人工晶体学报,2017,46(2):231-237. LIU Wenbin,TIAN Tian,XU Jiayue. Research progress of negative thermal expansion ferroelectric crystals[J]. Journal of Synthetic Crystals,2017,46(2):231-237. [22] 刁志聪,林伟林. 负热膨胀材料的研究现状及展望[J].中国钨业,2010,25(2):38-42. DIAO Zhicong,LIN Weilin. Situation and prospect of negative thermal expansion materials research[J]. China Tungsten Industry,2010,25(2):38-42. [23] 冯国强. 几类ABX3型杂化无机-有机框架材料的力学性质研究[D]. 武汉:华中科技大学,2016. FENG Guoqiang. Mechanical properties of hybrid ABX3 type inorganic-organic frameworks[D]. Wuhan:Huazhong University of Science & Technology,2016. [24] CHANG R. Physical chemistry for the chemical and biological sciences[M]. America:University Science Books,2000. [25] HAMMONDS K D,BOSENICK A,HEINE V,et al. Rigid unit modes in crystal structures with octahedrally coordinated atoms[J]. American Mineralogist,1998,83(5-6):476-479. [26] PRYDE A K,HAMMONDS K D,DOVE M T,et al. Origin of the negative thermal expansion in ZrW2O8and ZrV2O7[J]. Journal of Physics:Condensed Matter,1996,8(50):10973. [27] FORSTER P M,YOKOCHI A,SLEIGHT A W. Enhanced negative thermal expansion in Lu2W3O12[J]. Journal of Solid State Chemistry,1998,140(1):157. [28] CHEN J,XING X R,LIU G R,et al. Structure and negative thermal expansion in the PbtiO3-BifeO3 system[J]. Applied Physics Letters,2006,89(10):101914. [29] SLEIGHT A W. Compounds that contract on heating[J]. Inorganic Chemistry,1998,37(12):2854-2860. [30] SANSON A,ROCCA F,DALBA G,et al. Negative thermal expansion and local dynamics in Cu2O and Ag2O[J]. Physical Review B,2006,73(21):214305. [31] ARTIOLI G,DAPIAGGI M,FORNASINI P,et al. Negative thermal expansion in cuprite-type compounds:A combined synchrotron XRPD,EXAFS,and computational study of Cu2O and Ag2O[J]. Journal of Physics and Chemistry of Solids,2006,67(9-10):1918-1922. [32] ZHENG X G,KUBOZONO H,YAMADA H,et al. Giant negative thermal expansion in magnetic nanocrystals[J]. Nature Nanotechnology,2008,3(12):724-726. [33] NELSON J B,RILEY D P. The Thermal expansion of graphite from 15℃ to 800℃:Part I. Experimental[J]. Proceedings of the Physical Society,1945,57(6):477. [34] CAIRNS A B,CATAFESTA J,LEVELUT C,et al. Giant negative linear compressibility in zinc dicyanoaurate[J]. Nature Materials,2013,12(3):212-216. [35] CHEN J,FAN L L,REN Y,et al. Unusual transformation from strong negative to positive thermal expansion in PbTiO3-BiFeO3perovskit[J]. Physical Review Letters,2013,110(11):115901. [36] HUANG R J,LIU Y Y,FAN W,et al. Giant negative thermal expansion in NaZn13-type La(Fe,Si,Co)13 compounds[J]. Journal of the American Chemical Society,2013,135(31):11469-11472. [37] SUN Z H,SONG X Y,XU L L. Effects of sintering temperature on microstructure,nitrogen deficiency and densification of spark plasma sintered Mn3Cu0.5Ge0.5N[J]. Ceramics International,2011,37(5):1693-1696. [38] TAN J,HUANG R J,LI W,et al. Broadened negative thermal expansion operation-temperature window in antiperovskite Mn3Zn0.6Ge0.4N prepared by spark plasma sintering[J]. Journal of Alloys and Compounds,2014,593:103-105. [39] ZHAO Y Y,HU F X,BAO L F,et al. Giant negative thermal expansion in bonded Mncoge-based compounds with Ni2In-type hexagonal structure[J]. Journal of the American Chemical Society,2015,137(5):1746-1749. [40] MARGADONNA S,PRASSIDES K,FITCH A N. Zero thermal expansion in a prussian blue analogue[J]. Journal of the American Chemical Society,2004,126(47):15390-15391. [41] LIGHTFOOT P,WOODCOCK D A,MAPLE M J,et al. The widespread occurrence of negative thermal expansion in zeolites[J]. Journal of Materials Chemistry,2001,11(1):212-216. [42] AMOS T G,YOKOCHI A,SLEIGHT A W. Phase transition and negative thermal expansion in tetragonal NbOPO4[J]. Journal of Solid State Chemistry,1998,141(1):303. [43] AMOS T G,SLEIGHT A W. Negative thermal expansion in orthorhombic NbOPO4[J]. Journal of Solid State Chemistry,2001,160(1):230-238. [44] GOODWIN A L,KEPERT C J. Negative thermal expansion and low-frequency modes in cyanide-bridged framework materials[J]. Physical Review B,2005,71(14):140301. [45] ATTFIELD M P,SLEIGHT A W. Exceptional negative thermal expansion in AlPO4-17[J]. Chemistry of Materials,1998,10(7):2013-2019. [46] WILLIAMS D J,PARTIN D E,LINCOLN F J,et al. The disordered crystal structures of Zn(CN)2 and Ga(CN)3[J]. Journal of Solid State Chemistry,1997,134(1):164-169. [47] CHAPMAN K W,CHUPAS P J,KEPERT C J. Direct observation of a transverse vibrational mechanism for negative thermal expansion in Zn(CN)2:An atomic pair distribution function analysis[J]. Journal of the American Chemical Society,2005,127(44):15630-15636. [48] CHAPMAN K W,CHUPAS P J,KEPERT C J. Compositional dependence of negative thermal expansion in the prussian blue analogues MIIPtIV(CN)6 (M= Mn,Fe,Co,Ni,Cu,Zn,Cd)[J]. Journal of the American Chemical Society,2006,128(21):7009-7014. [49] 宋晓艳,孙中华. 负热膨胀反钙钛矿锰氮化合物的研究综述[J]. 金属学报,2011,47(11):1362-1371. SONG Xiaoyan,SUN Zhonghua. Review in antiperovskite manganese nitrides with negative thermal expansion properties[J]. Acta Metallurgica Sinica,2011,47(11):1362-1371. [50] 罗丰华,陶玉强,戴恩斌,等. 热致收缩ZrW2O8化合物及其复合材料[J]. 材料导报,2005,19(11):73-78. LUO Fenghua,TAO Yuqiang,DAI Enbin,et al. Negative thermal expansion compound and its composite materials[J]. Materials Reports,2005,19(11):73-78. [51] 王聪,王天民,沈容,等. 新型负热膨胀氧化物材料的研究[J]. 物理,2001(12):772-777. WANG Cong,WANG Tianmin,SHEN Rong,et al. A new type of negative thermal expansion oxides[J]. Physics,2001(12):772-777. [52] EVANS J S O,HU Z,JORGENSEN J D,et al. Compressibility,phase transitions,and oxygen migration in zirconium tungstate,ZrW2O8[J]. Science,1997,275(5296):61-65. [53] EVANS J S O,MARY T A,SLEIGHT A W. Negative thermal expansion in Sc2(WO)3[J]. Journal of Solid State Chemistry,1998,137(1):148-160. [54] WOODCOCK D A,LIGHTFOOT P,RITTER C. Negative thermal expansion in Y2(WO4)3[J]. Journal of Solid State Chemistry,2000,149(1):92-98. [55] EVANS J S O,MARY T A. Structural phase transitions and negative thermal expansion in Sc2(MoO4)3[J]. International Journal of Inorganic Materials,2000,2(1):143-151. [56] ARI M,MILLER K J,MARINKOVIC B A,et al. Rapid synthesis of the low thermal expansion phase of Al2Mo3O12 via a sol-gel method using polyvinyl alcohol[J]. Journal of Sol-Gel Science and Technology,2011,58(1):121-125. [57] PRISCO L P,ROMAO C P,RIZZO F,et al. The effect of microstructure on thermal expansion coefficients in powder-processed Al2Mo3O12[J]. Journal of Materials Science,2013,48(7):2986-2996. [58] LI Z Y,SONG W B,LIANG E J. Structures,phase transition and crystal water of Fe2-xYxMo3O12[J]. The Journal of Physical Chemistry C,2011,115(36):17806-17811. [59] 沈容,王聪,王天民. 负热膨胀氧化物材料ZrW2O8的研究现状[J]. 无机材料学报,2002(6):1089-1094. SHEN Rong,WANG Cong,WANG Tianmin. Progress in research on negative thermal expansion of ZrW2O8[J]. Journal of Inorganic Materials,2002(6):1089-1094. [60] WU M M,PENG J,CHENG Y Z,et al. Thermal expansion in solid solution Er2-xSmxW3O12[J]. Materials Science and Engineering:B,2007,137(1-3):144-148. [61] WU M M,CHENG Y Z,PENG J,et al. Synthesis of solid solution Er2-xCexW3O12 and studies of their thermal expansion behavior[J]. Materials Research Bulletin,2007,42(12):2090-2098. [62] WU M M,PENG J,CHENG Y Z,et al. Structure and thermal expansion properties of solid solution Nd2-xErxW3O12 (0.0≤x≤0.6 and 1.5≤x≤2.0)[J]. Solid State Sciences,2006,8(6):665-670. [63] XIAO X L,PENG J,WU M M,et al. The crystal structure and thermal expansion properties of solid solutions Ln2-xDyxW3O12(Ln=Er and Y)[J]. Journal of Alloys and Compounds,2008,465(1-2):556-561. [64] PENG J,WU M M,WANG H,et al. Structures and negative thermal expansion properties of solid solutions YxNd2-xW3O12(x=0.0-1.0,1.6-2.0)[J]. Journal of Alloys and Compounds,2008,453(1-2):49-54. [65] MARINKOVIC B A,JARDIM P M,DE AVILLEZ R R,et al. Negative thermal expansion in Y2Mo3O12[J]. Solid State Sciences,2005,7(11):1377-1383. [66] SUMITHRA S,TYAGI A K,UMARJI A M. Negative thermal expansion in Er2W3O12and Yb2W3O12 by high temperature X-ray diffraction[J]. Materials Science and Engineering:B,2005,116(1):14-18. [67] GATES S D,LIND C. Polymorphism in yttrium molybdate Y2Mo3O12[J]. Journal of Solid State Chemistry,2007,180(12):3510-3514. [68] TAKENAKA K,ASANO K,MISAWA M,et al. Negative thermal expansion in Ge-free antiperovskite manganese nitrides:Tin-doping effect[J]. Applied Physics Letters,2008,92(1):011927. [69] TAKENAKA K,OZAWA A,SHIBAYAMA T,et al. Extremely low temperature coefficient of resistance in antiperovskite Mn3Ag1−xCuxN[J]. Applied Physics Letters,2011,98(2):022103. [70] WANG B S,TONG P,SUN Y P,et al. Enhanced giant magnetoresistance in Ni-doped antipervoskite compounds GaCMn3−xNix(x=0.05,0.10)[J]. Applied Physics Letters,2009,95(22):222509. [71] SUN Y,WANG C,WEN Y C,et al. Lattice contraction and magnetic and electronic transport properties of Mn3Zn1−xGexN[J]. Applied Physics Letters,2007,91(23):231913. [72] LIN J C,TONG P,ZHANG K,et al. Colossal negative thermal expansion with an extended temperature interval covering room temperature in fine-powdered Mn0.98CoGe[J]. Applied Physics Letters,2016,109(24):241903. [73] LIN J C,TONG P,LIN H,et al. Giant negative thermal expansion covering room temperature in nanocrystalline GaNxMn3[J]. Applied Physics Letters,2015,107(13):131902. [74] HUANG R J,LI L F,CAI F S,et al. Low-temperature negative thermal expansion of the antiperovskite manganese nitride Mn3CuN codoped with Ge and Si[J]. Applied Physics Letters,2008,93(8):61. [75] DELLA GASPERA E,TUCKER R,STAR K,et al. Copper-based conductive composites with tailored thermal expansion[J]. ACS Applied Materials & Interfaces,2013,5(21):10966-10974. [76] PENG Z W,SUN Y Z,PENG L M. Hydrothermal synthesis of ZrW2O8 nanorods and its application in zrw2o8/cu composites with controllable thermal expansion coefficients[J]. Materials & Design,2014,54:989-994. [77] DING L,WANG C,NA Y Y,et al. Preparation and near zero thermal expansion property of Mn3Cu0.5A0.5N(A=Ni,Sn)/Cu composites[J]. Scripta Materialia,2011,65(8):687-690. [78] BALCH D K,DUNAND D C. Copper-zirconium tungstate composites exhibiting low and negative thermal expansion influenced by reinforcement phase transformations[J]. Metallurgical and Materials Transactions A,2004,35:1159-1165. [79] HOLZER H,DUNAND D C. Phase transformation and thermal expansion of Cu/ZrW2O8 metal matrix composites[J]. Journal of Materials Research,1999,14(3):780-789. [80] YILMAZ S,DUNAND D C. Finite-element analysis of thermal expansion and thermal mismatch stresses in a Cu–60vol%ZrW2O8 composite[J]. Composites Science and Technology,2004,64(12):1895-1898. [81] YILMAZ S. Thermal mismatch stress development in Cu–ZrW2O8 composite investigated by synchrotron X-ray diffraction[J]. Composites Science and Technology,2002,62(14):1835-1839. [82] TRUJILLO J E,KIM J W,LAN E H,et al. Metal-matrix nanocomposites with tailored coefficients of thermal expansion for improved thermomechanical reliability[J]. Journal of Electronic Materials,2012,41(6):1020-1023. [83] YAN J,SUN Y,WANG C,et al. Study of structure of Mn3Cu0.5Ge0.5N/Cu composite with nearly zero thermal expansion behavior around room temperature[J]. Scripta Materialia,2014,84:19-22. [84] YAN X H,MIAO J J,LIU J Q,et al. Zero thermal expansion,electrical conductivity and hardness of Mn3Zn0.5Sn0.5N/Cu composites[J]. Journal of Alloys and Compounds,2016,677:52-56. [85] XUE Z W,WANG L D,LIU Z Y,et al. Effect of interfacial state on thermal expansion behaviors of β-LiAlSiO4 particulate-reinforced Cu composites[J]. Scripta Materialia,2010,62(11):867-870. [86] MATSUMOTO A,KOBAYASHI K,NISHIO T,et al. Fabrication and thermal expansion of Al-ZrW2O8 composites by pulse current sintering process[J]. Materials Science Forum,2003,426-432:2279-2284. [87] 黄兰萍,陈康华. 近零膨胀ZrW2O8/Al6013复合材料的制备与性能[J]. 金属热处理,2006(1):20-22. HUANG Lanping,CHEN Kanghua. Preparation and properties of near-zero thermal expansion ZrW2O8/AI6013[J]. Heat Treatment of Metals,2006(1):20-22. [88] WU Y,WANG M L,CHEN Z,et al. The effect of phase transformation on the thermal expansion property in Al/ZrW2O8 composites[J]. Journal of Materials Science,2013,48(7):2928-2933. [89] WANG L D,XUE Z W,CUI Y,et al. Thermal mismatch induced disorder of beta-eucryptite and its effect on thermal expansion of beta-eucryptite/Al composites[J]. Composites Science and Technology,2012,72(13):1613-1617. [90] TAKENAKA K,HAMADA T,KASUGAI D,et al. Tailoring thermal expansion in metal matrix composites blended by antiperovskite manganese nitrides exhibiting giant negative thermal expansion[J]. Journal of Applied Physics,2012,112(8):083517. [91] ZHOU C,ZHANG Q,TAN X,et al. Fully-dense Mn3Zn0.7Ge0.3N/Al composites with zero thermal expansion behavior around room temperature[J]. Materialia,2019,6:100289. [92] ZHOU C,TANG Z Y,KONG X Q,et al. High-performance zero thermal expansion in Al metal matrix composites[J]. Acta Materialia,2024,275:120076. [93] SHI X W,LIAN H,QI R Q,et al. Preparation and properties of negative thermal expansion Zr2P2WO12 powders and Zr2P2WO12/TiNi composites[J]. Materials Science and Engineering:B,2016,203:1-6. [94] LI W W,CHEN B,XIONG H P,et al. Joining of Cf/SiC composite to GH783 superalloy with NiPdPtAu-Cr filler alloy and a Mo interlayer[J]. Journal of Materials Science & Technology,2019,35(9):2099-2106. [95] WANG Y L,WANG W L,HUANG J H,et al. Composite brazing of C/C composite and Ni-based superalloy using (Ag-10Ti)+TiC filler material[J]. Journal of Materials Processing Technology,2021,288:116886. [96] DAI X Y,CAO J,CHEN Z,et al. Brazing SiC ceramic using novel B4C reinforced Ag-Cu-Ti composite filler[J]. Ceramics International,2016,42(5):6319-6328. [97] SONG Y Y,LIU D,HU S P,et al. Graphene nanoplatelets reinforced AgCuTi composite filler for brazing SiC ceramic[J]. Journal of the European Ceramic Society,2019,39(4):696-704. [98] WANG P C,LIU X F,WANG H H,et al. Negative thermal expansion Y2Mo3O12 particles reinforced AgCuTi composite filler for brazing Cf/SiC and GH3536[J]. Materials Characterization,2022(185):111754. [99] BA J,JI X,WANG B,et al. Root-like C/SiC surface structure fabricated by the thermal and electrochemical corrosion for brazing to Nb[J]. Composites Part B:Engineering,2021,218:108942. [100] BA J,ZHENG X H,NING R,et al. C/SiC composite-Ti6Al4V joints brazed with negative thermal expansion ZrP2WO12 nanoparticle reinforced AgCu alloy[J]. Journal of the European Ceramic Society,2019,39(4):755-761. [101] WANG X Y,SI X Q,LI M S,et al. Y2W3O12@SiO2 composite particles for regulating thermal expansion and interfacial reactions in BaZr0.1Ce0.7Y0.1Yb0.1O3-δ/AISI 441 joints[J]. Composites Part B:Engineering,2022,242:110108. [102] SI X Q,CAO J,TALIC B,et al. A novel Ag based sealant for solid oxide cells with a fully tunable thermal expansion[J]. Journal of Alloys and Compounds,2020,831:154608. [103] WANG P C,LIN J H,XU Z Q,et al. Negative thermal expansion of Sc2W3O12 interlayer with three-dimensional interpenetrating network structure for brazing C/SiC composites and GH3536[J]. Carbon:An International Journal Sponsored by the American Carbon Society,2023,201:765-775. [104] VARGA T,WILKINSON A P,JORGENSEN J D,et al. Neutron powder diffraction study of the orthorhombic to monoclinic transition in Sc2W3O12 on compression[J]. Solid State Sciences,2006,8(3-4):289-295. [105] ZHANG L X,ZHANG B,SUN Z,et al. Brazing of ZrB2-SiC-C and GH99 with AgCuTi/SiC interpenetrating network structural composite as an interlaye[J]. Ceramics International,2020,46(8):10224-10232. [106] WANG Z Y,BUTT H A,MA Q,et al. The use of a carbonized phenolic formaldehyde resin coated Ni foam as an interlayer to increase the high-temperature strength of C/C composite-Nb brazed joints[J]. Ceramics International,2022,48(6):7584-7592. [107] WANG Z Y,LI M N,BA J,et al. In-Situ synthesized TiC nano-flakes reinforced C/C composite-Nb brazed joint[J]. Journal of the European Ceramic Society,2018,38(4):1059-1068. [108] HAN A,WANG G,WANG W,et al. Microstructure evolution and mechanical properties of SiC and Nb joint brazed with AgCuTi/(Sr0.2Ba0.8)TiO3-Cu/AgCuTi composite fillers[J]. Ceramics International,2024,50(18):34005-34016. [109] QI J L,BA J,LI J H,et al. β-LiAlSiO4 reinforced Cu composite interlayer for brazing C/C composites and Nb[J]. Vacuum,2020,172:109102. |
[1] | CHEN Zhaojie, XIE Jin, LIU Junhan, XIONG Changxin, LI Difan. Study on Impulse-discharge Driven Abrasive Flow Assisted Grinding of Monocrystalline SiC [J]. Journal of Mechanical Engineering, 2024, 60(9): 383-392. |
[2] | LI Li, WANG Yixuan, LUO Fen, ZHANG Wentao, ZHAO Wei, LI Xiaoqiang. Effect of Brazing Time on TiAl Joint Brazed with TiH2-65Ni+TiB2 Filler [J]. Journal of Mechanical Engineering, 2024, 60(8): 176-185. |
[3] | WANG Xingxing, WU Gang, HE Peng, YANG Xiaohong. First-principles Calculations on Interface Behavior of Ni/WC Composite Brazed Coatings [J]. Journal of Mechanical Engineering, 2024, 60(4): 296-304. |
[4] | HU Long, LIU Hongyan, CHENG Huimei, CHEN Weiqi, FENG Guangjie, YE Yanhong, DENG Dean. Study on Residual Stress of Multi-layer and Multi-pass Butt-welded Joint for Ultra-high Strength Wear-resistant Steel NM500 [J]. Journal of Mechanical Engineering, 2024, 60(4): 335-344. |
[5] | MA Yongtao, SUN Ning, WANG Junlong, LI Chunfan, LU Chunsheng, ZHANG Bin, LIU Lanrong. Calculation of Shot Peening Coverage of Pre-mixed Jet and its Influence on the Surface Integrity of Carburized Steel [J]. Journal of Mechanical Engineering, 2024, 60(3): 393-404. |
[6] | LI Chun, CHEN Lei, SI Xiaoqing, QI Junlei, CAO Jian. Review of the Research on the Control of the Residual Stress in Ceramic-metal Joints [J]. Journal of Mechanical Engineering, 2024, 60(22): 21-39. |
[7] | WANG Pengcheng, LI Jinzheng, LIU Weihan, CHEN Haiyan, LI Wenya. Research on Microstructure and Mechanical Properties of Brazed Joint of Al0.3CoCrFeNi High Entropy Alloy and YG15 Hard Alloy [J]. Journal of Mechanical Engineering, 2024, 60(22): 86-93. |
[8] | ZHANG Zhenyang, WANG Jingkuan, LI Peng, WANG Yinchen, LI Chao, ZHANG Liangliang, DONG Honggang. Effects of Brazing Filler Composition and Brazing Temperature on the Microstructure and Mechanical Properties of Ti2AlNb and GH4169 Alloy Brazed Joints [J]. Journal of Mechanical Engineering, 2024, 60(22): 116-129. |
[9] | SHEN Zhikang, WANG Bo, YANG Yi, GUAN Yuehui, ZHOU Ping, HOU Wentao, PIAO Zhongyu, LIU Xiaochao, HUANG Guoqiang, YANG Xiawei, CHEN Haiyan, TIAN Yanhong, LI Wenya, LI Huijun. Interfacial Bonding Mechanism and Fatigue Performance of Al/Steel Dissimilar Welds Fabricated via Friction Stir Brazing [J]. Journal of Mechanical Engineering, 2024, 60(22): 130-138. |
[10] | DAI Jinyao, LIU Xiandong, SHAN Yingchun, JIANG Er. Research on the Residual Stress Field of Combined Welding of Automotive Steel Wheel [J]. Journal of Mechanical Engineering, 2024, 60(22): 291-301. |
[11] | JIA Xu, HU Lifang, LI Zihao, ZHENG Zhi, LIU Wei, ZHANG Peng. Study on the Brazing Mechanism and Mechanical Properties of Glass-Copper Joining Process Based on Anodic Bonding [J]. Journal of Mechanical Engineering, 2024, 60(2): 140-149. |
[12] | GAO Dejun, WU Shaowang, YANG Shengxu, ZHANG Chenghao, ZHOU Long, SI Xiaoqing, LI Chun, QI Junlei, CAO Jian. Study on the Influences of High Temperature Treatment on the Interfacial Microstructure and Mechanical Properties of TA1/TC4 Brazed Joints [J]. Journal of Mechanical Engineering, 2024, 60(14): 109-116. |
[13] | REN Guoxin, CUI Zeqin, DING Zhengxiang, HAO Xiaohu, WANG Wenxian, LI Weiguo. Research Progress in Laser Additive Manufacturing of Invar Alloys [J]. Journal of Mechanical Engineering, 2024, 60(11): 259-272. |
[14] | ZHANG Jiyin, YAO Changfeng, TAN Liang, CUI Minchao, ZHOU Zheng, SUN Yunqi, LI Guoxi, FAN Yi. Research Progress of the Effect of Shot Peening Residual Stress on Fatigue Performance and Deformation Control [J]. Journal of Mechanical Engineering, 2023, 59(6): 46-60. |
[15] | HE Haifeng, LIU Huaiju, ZHU Caichao, LI Gaomeng, CHEN Difa. Quantitative Effect of Residual Stress on Gear Bending Fatigue [J]. Journal of Mechanical Engineering, 2023, 59(4): 53-61. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||