Journal of Mechanical Engineering ›› 2024, Vol. 60 ›› Issue (11): 259-272.doi: 10.3901/JME.2024.11.259
Previous Articles Next Articles
REN Guoxin1, CUI Zeqin1,2, DING Zhengxiang3, HAO Xiaohu1,2,3, WANG Wenxian1,2,3, LI Weiguo4
Received:
2023-04-05
Revised:
2023-11-20
Online:
2024-06-05
Published:
2024-08-02
CLC Number:
REN Guoxin, CUI Zeqin, DING Zhengxiang, HAO Xiaohu, WANG Wenxian, LI Weiguo. Research Progress in Laser Additive Manufacturing of Invar Alloys[J]. Journal of Mechanical Engineering, 2024, 60(11): 259-272.
[1] SAHOO A,MEDICHERLA V R R.Fe-Ni Invar alloys:A review[J].Materials Today:Proceedings,2021,43:2242-2244. [2] SONG Y,SHI N,DENG S,et al.Negative thermal expansion in magnetic materials[J].Progress in Materials Science,2021,121:100835. [3] SMITH R J,LEWIS G J,YATES D H.Development and application of nickel alloys in aerospace engineering[J].Aircraft Engineering and Aerospace Technology,2001,73(2):138-147. [4] 刘洪旺.高性能因瓦合金的研究[D].天津:河北工业大学,2015.LIU Hongwang.Researches on Invar alloy with high performance[D].Tianjin:Hebei University of Technology,2015. [5] 彭智权.Invar36合金的激光选区熔化成形及热处理工艺研究[D].廊坊:北华航天工业学院,2021.PENG Zhiquan.Study on laser selective melting forming and heat treatment of Invar36 alloy[D].Langfang:North China Institute of Aerospace Engineering,2021. [6] 陈昀,张明霞,苗承鹏,等.Ni36Fe因瓦合金-老材料和新用途[J].金属世界,2009,(6):92-97.CHEN Yun,ZHANG Mingxia,MIAO Chengpeng,et al.Ni36Fe invar alloy-the old material and new application[J].Metal World,2009,(6):92-97. [7] 付程瑞.低膨胀Fe-Ni合金因瓦效应的原子尺度机理及其团簇的热膨胀[D].济南:山东大学,2020.FU Chengrui.Atomic-scale mechanism of Invar effect for low-expansion Fe-Ni alloy and thermal expansion of Fe-Ni clusters[D].Jinan:Shandong University,2020. [8] 王玉华,陈洁,占小红,等.复合材料Invar模具制造技术分析[J].航空制造技术,2014(11):93-99.WANG Yuhua,CHEN Jie,ZHAN Xiaohong,et al.Manufacturing technology research on Invar composites mould[J].Aeronautical Manufacturing Technology,2014(11):93-99. [9] QIU C,LIU Y,LIU H.Influence of addition of TiAl particles on microstructural and mechanical property development in Invar 36 processed by laser powder bed fusion[J].Additive Manufacturing,2021,48:102457. [10] JINAN A D,ISMAIL K A F,YUSOF B.Thermal expansion in ferromagnetic Fe-Ni Invar alloy[J].International Journal of Engineering and Science.2012,1(1):48-51. [11] 郭绍庆,刘伟,黄帅,等.金属激光增材制造技术发展研究[J].中国工程科学,2020,22(3):56-62.GUO Shaoqing,LIU Wei,HUANG Shuai,et al.Development of laser additive manufacturing technology for metals[J].Strategic Study of CAE,2020,22(3):56-62. [12] 唐超兰,温竟青,张伟祥,等.钛合金3D打印成形技术及缺陷[J].航空材料学报,2019,39(1):38-47.TANG Chaolan,WEN Jingqing,ZHANG Weixiang,et al.Titanium alloy 3D printing forming technology and defects[J].Journal of Aeronautical Materials,2019,30(1):38-47. [13] 李涤尘,贺健康,田小永,等.增材制造:实现宏微结构一体化制造[J].机械工程学报,2013,49(6):129-135.LI Dichen,HE Jiankang,TIAN Xiaoyong,et al.Additive manufacturing:Integrated fabrication of macro/microstructures[J].Journal of Mechanical Engineering,2013,49(6):129-135. [14] YAKOUT M,ELBESTAWI M A,VELDHUIS S C.A study of thermal expansion coefficients and microstructure during selective laser melting of Invar 36 and stainless steel 316L[J].Additive Manufacturing,2018,24:405-418. [15] 吴圣川,胡雅楠,杨冰,等.增材制造材料缺陷表征及结构完整性评定方法研究综述[J].机械工程学报,2021,57(22):3-34.WU Shengchuan,HU Yanan,YANG Bing,et al.Review on defect characterization and structural integrity assessment method of additively manufactured materials[J].Journal of Mechanical Engineering,2021,57(22):3-34. [16] ZHAN X,QI C,GAO Z,et al.The influence of heat input on microstructure and porosity during laser cladding of Invar alloy[J].Optics and Laser Technology,2019,113:453-461. [17] YAKOUT M,CADAMURO A,ELBESTAWI M A,et al.The selection of process parameters in additive manufacturing for aerospace alloys[J].The International Journal of Advanced Manufacturing Technology,2017,92(5-8):2081-2098. [18] WEGENER T,BRENNE F,FISCHER A,et al.On the structural integrity of Fe-36Ni Invar alloy processed by selective laser melting[J].Additive Manufacturing,2021,37:101603. [19] YANG Q,WEI K,YANG X,et al.Microstructures and unique low thermal expansion of Invar 36 alloy fabricated by selective laser melting[J].Materials Characterization,2020,166:110409. [20] WEI K,YANG Q,LING B,et al.Mechanical properties of Invar 36 alloy additively manufactured by selective laser melting[J].Materials Science and Engineering:A,2020,772:138799. [21] QIU C,ADKINS N J E,ATTALLAH M M.Selective laser melting of Invar 36:Microstructure and properties[J].Acta Materialia,2016,103:382-395. [22] HARRISON N J,TODD I,MUMTAZ K.Thermal expansion coefficients in Invar processed by selective laser melting[J].Journal of Materials Science,2017,52(17):10517-10525. [23] YAKOUT M,PHILLIPS I,ELBESTAWI M A,et al.In-situ monitoring and detection of spatter agglomeration and delamination during laser-based powder bed fusion of Invar 36[J].Optics and Laser Technology,2021,136:106741. [24] YAKOUT M,ELBESTAWI M A,VELDHUIS S C.Density and mechanical properties in selective laser melting of Invar 36 and stainless steel 316L[J].Journal of Materials Processing Technology,2019,266:397-420. [25] LI H,CHEN B,TAN C,et al.Microstructure evolution and mechanical properties of laser metal deposition of Invar 36 alloy[J].Optics and Laser Technology,2020,125:106037. [26] ZHAN X,ZHOU J,QI C,et al.The influence of heat input on the microstructure and solute segregation mechanism of Invar alloy laser melting deposition process[J].Materials Research Express,2018,5(11):116530. [27] TAN H,WANG Y,WANG G,et al.Investigation on microstructure and properties of laser solid formed low expansion Invar 36 alloy[J].Journal of Materials Research and Technology,2020,9(3):5827-5839. [28] ZHAN X,QI C,ZHOU J,et al.Effect of heat input on the subgrains of laser melting deposited Invar alloy[J].Optics and Laser Technology,2019,109:577-583. [29] THIJS L,VERHAEGHE F,CRAEGHS T,et al.A study of the microstructural evolution during selective laser melting of Ti-6Al-4V[J].Acta Materialia,2010,58(9):3303-3312. [30] DEBROY T,WEI H L,ZUBACK J S,et al.Additive manufacturing of metallic components-Process,structure and properties[J].Progress in Materials Science,2018,92:112-224. [31] SHAHIR Y,CHEN Y,RICHARD B,et al.Investigation on porosity and microhardness of 316l stainless steel fabricated by selective laser melting[J].Metals,2017,7(2):64. [32] GU D,SHEN Y.Balling phenomena in direct laser sintering of stainless steel powder:Metallurgical mechanisms and control methods[J].Materials and Design,2009,30(8):2903-2910. [33] ZHAN X,MENG Y,ZHOU J,et al.Quantitative research on microstructure and thermal physical mechanism in laser melting deposition for Invar alloy[J].Journal of Manufacturing Processes,2018,31:221-231. [34] LIU T,GAO Z,LING W,et al.Effect of heat accumulation on the microstructure of Invar alloy manufactured by multi-layer multi-pass laser melting deposition[J].Optics and Laser Technology,2021,144:107407. [35] 孟遥.Invar合金激光熔化沉积过程微观组织建模与仿真研究[D].南京:南京航空航天大学,2018.MENG Yao.Research on modeling and simulating of microstructure during laser melting depositon for Invar alloy[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2018. [36] ZHU Y,TIAN X,LI J,et al.Microstructure evolution and layer bands of laser melting deposition Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy[J].Journal of Alloys and Compounds,2014,616:468-474. [37] ASGARI H,SALARIAN M,MA H,et al.On thermal expansion behavior of invar alloy fabricated by modulated laser powder bed fusion[J].Materials and Design,2018,160:895-905. [38] GHABEZLOO S.Effect of porosity on the thermal expansion coefficient:A discussion of the paper'Effects of mineral admixtures on the thermal expansion properties of hardened cement paste'by Z.H.Shui,R.Zhang,W.Chen,D.Xuan,Constr.Build.Mater.24(9)(2010)1761-1767[J].Construction and Building Materials,2010,24(9):1796-1798. [39] GHABEZLOO S.Micromechanical analysis of the effect of porosity on the thermal expansion coefficient of heterogeneous porous materials[J].International Journal of Rock Mechanics and Mining Sciences,2012,55:97-101. [40] DOBSON P.Physical properties of crystals-their representation by tensors and matrices[J].Physics Bulletin,1985,36:506-506. [41] LI X,CHEN N,LI J,et al.Effect of temperature and strain rate on deformation behavior of Invar 36 alloy[J].Acta Metallurgica Sinica,2017,53(8):968-974. [42] WANG Y,TANG H,FANG Y,et al.Microstructure and mechanical properties of hybrid fabricated 1Cr12Ni2WMoVNb steel by laser melting deposition[J].Chinese Journal of Aeronautics,2013,26(2):481-486. [43] ZHU S,YU C,CHANG Z,et al.Microstructure evolution mechanism of single and multi-pass in laser cladding based on heat accumulation effect for invar alloy[J].The International Journal of Advanced Manufacturing Technology,2021,117(11-12):3447-3463. [44] 陆建生,沈黎明.Fe-36Ni因瓦合金研究进展[J].功能材料,2004,35(Z1):3424-3427.LU Jiansheng,SHEN Liming.Advances in Fe-36Ni Invar alloy[J].Journal of Functional Materials,2004,35(Z1):3424-3427. [45] 马斌.合金元素对因瓦合金焊缝微观组织及性能影响的研究[D].天津:河北工业大学,2020.MA Bin.Effect of alloying elements on microstructure and properties of invar alloywel[D].TianJin:Hebei University of Technology,2020. [46] 陆建生,倪和勇.碳化物强化型Fe-36Ni因瓦合金力学与膨胀特性研究[C]//第三届宝钢学术年会论文集.2008:804-807.LU Jiansheng,NI Heyong.The study on mechanical property and expansion character of carbide hardening Fe-36Ni lnvar alloys[C]//Proceedings of the Third Academic Conference (Baosteel BAC 2008).2008:804-807. [47] 骆良顺,张宇民,张凤海,等.微量钴合金化的因瓦合金模具铸造成形试验研究[J].铸造,2010,59(10):1012-1015.LUO Liangshun,ZHANG Yumin,ZHANG Fenghai,et al.Experimentall study on casting technique of an Invar alloy mold with cobalt microalloying[J].Foundry,2010,59(10):1012-1015. [48] 张建福,徐进,王新林.因瓦合金强化途径研究概况[J].金属功能材料,2006,13(2):37-41.ZHANG Jianfu,XU Jin,WANG Xinlin.General review of present research on strengthening methods of Invar alloy[J].Metallic Functional Materials,2006,13(2):37-41. [49] 王超.顺磁性元素改善因瓦合金性能研究[D].西安:西安建筑科技大学,2013.WANG Chao.Study of improving Invar alloy performance by paramagnetism element[D].Xi'an:Xi'an University of Architecture and Technology,2013. [50] BOBBIO L D,OTIS R A,BORGONIA J P,et al.Additive manufacturing of a functionally graded material from Ti-6Al-4V to Invar:Experimental characterization and thermodynamic calculations[J].Acta Materialia,2017,127:133-142. [51] BOCKLUND B,BOBBIO L D,OTIS R A,et al.Experimental validation of Scheil-Gulliver simulations for gradient path planning in additively manufactured functionally graded materials[J].Materialia,2020,11:100689. [52] 李祺祺,温耀杰,张百成,等.梯度功能合金的增材制造技术研究进展[J].机械工程学报,2021,57(22):184-200.LI Qiqi,WEN Yaojie,ZHANG Baicheng,et al.Research progress of functional graded alloy prepared by additive manufacturing technology[J].Journal of Mechanical Engineering,2021,57(22):184-200. [53] BOBBIO L D,BOCKLUND B,OTIS R,et al.Experimental analysis and thermodynamic calculations of an additively manufactured functionally graded material of V to invar 36[J].Journal of Materials Research,2018,33(11):1642-1649. [54] WEI C,GU H,LI Q,et al.Understanding of process and material behaviours in additive manufacturing of Invar36/Cu10Sn multiple material components via laser-based powder bed fusion[J].Additive Manufacturing,2021,37:101683. [55] GU H,WEI C,LI L,et al.Numerical and experimental study of molten pool behaviour and defect formation in multi-material and functionally graded materials laser powder bed fusion[J].Advanced Powder Technology,2021,32(11):4303-4321. [56] ZOU Y,MA B,CUI H,et al.Microstructure,wear,and oxidation resistance of nanostructured carbide-strengthened cobalt-based composite coatings on Invar alloys by laser cladding[J].Surface and Coatings Technology,2020,381:125188. [57] DU M,WANG L,GAO Z,et al.Microstructure and element distribution characteristics of Y2O3 modulated WC reinforced coating on Invar alloys by laser cladding[J].Optics and Laser Technology,2022,153:108205. [58] 王虎,赵琳,彭云,等.增材制造TiAl基合金的研究进展[J].粉末冶金技术,2022,40(2):110-117.WANG Hu,ZHAO Lin,PENG Yun,et al.Research progress of TiAl-based alloys fabricated by additive manufacturing[J].Powder Metallurgy Technology,2022,40(2):110-117. |
[1] | WEN Qiuling, YANG Ye, HUANG Hui, HUANG Guoqin, HU Zhongwei, CHEN Jinhong, WANG Hui, WU Xian. Review of Research Progress in Laser-based Hybrid Machining of Hard and Brittle Materials [J]. Journal of Mechanical Engineering, 2024, 60(9): 168-188. |
[2] | KONG Ling, WANG Yuhui, Yang Haokun, PENG Yan. Research Situation of Service Performance of Fe-Mn-Al-C Austenitic Low Density Steel [J]. Journal of Mechanical Engineering, 2024, 60(8): 34-47. |
[3] | REN Zhiying, HUANG Zihao, FANG Rongzheng, WANG Qinwei, MO Jiliang, Qin Hongling. Study on Thermomechanical Properties of Metal-rubber Disordered Lattice Interpenetrating Structures [J]. Journal of Mechanical Engineering, 2024, 60(8): 165-175. |
[4] | LI Li, WANG Yixuan, LUO Fen, ZHANG Wentao, ZHAO Wei, LI Xiaoqiang. Effect of Brazing Time on TiAl Joint Brazed with TiH2-65Ni+TiB2 Filler [J]. Journal of Mechanical Engineering, 2024, 60(8): 176-185. |
[5] | GU Yufen, LU Na, SHI Yu, SUN Qingling. Microstructure Characteristics of 16MnDR Steel Welded Joint and Its Corrosion Behavior in Hydrofluoric Acid Environment [J]. Journal of Mechanical Engineering, 2024, 60(8): 196-203. |
[6] | CHEN Wei, ZHAO Jie, ZHU Libin, CAO Haibo. Research Progress on Additive Manufacturing of Low Activation Steels [J]. Journal of Mechanical Engineering, 2024, 60(7): 312-333. |
[7] | ZHENG Yang, ZHAO Zihao, LIU Wei, YU Zhengzhe, NIU Wei, LEI Yiwen, SUN Ronglu. Research Progress in High-performance Mg Alloys Prepared by Additive Manufacturing [J]. Journal of Mechanical Engineering, 2024, 60(7): 385-400. |
[8] | SONG Boxue, WANG Zisheng, CHEN Keqiang, JIANG Xingyu, YU Tianbiao, LIU Weijun, YANG Guozhe. Effect of Melting and Solidification Behavior and Dendrite Morphology of DED Melt Pool on Tensile Strength [J]. Journal of Mechanical Engineering, 2024, 60(7): 411-424. |
[9] | LI Kun, JI Chen, BAI Shengwen, JIANG Bin, PAN Fusheng. Research Status and Prospects of Wire-arc Additive Manufacturing Technology for High-performance Magnesium Alloys [J]. Journal of Mechanical Engineering, 2024, 60(7): 289-311. |
[10] | BAO Xinyu, MA Yonglin, CHENG Qiao, SU Yihui, WANG Jie, XING Shuqing. Effect of the Pulsed Magnetic Melt Treatment on Solidification Structure and Mechanics Performance of the Direct-chilling Casting Al-Si-Mg-Cu-Ni Alloy [J]. Journal of Mechanical Engineering, 2024, 60(6): 279-286. |
[11] | ZHOU Tian, CAI Lixun, HAN Guangzhao. Novel Flat-SPT Method for Obtaining Mechanical Properties of Ductile Materials and Its Application [J]. Journal of Mechanical Engineering, 2024, 60(4): 316-325. |
[12] | CUI Guihan, YANG Chunli. Strengthening and Toughening Mechanism of Weld Metals on GMAW-P of High Strength and High Toughness Welding Wire [J]. Journal of Mechanical Engineering, 2024, 60(4): 326-334. |
[13] | MA Yixing, YANG Yutao, GUAN Xiaohu, YANG Qi, ZHAO Tongxin. Microstructure and Interfacial Bonding Property of a Hot-roll-bonded TWIP/IF Steel Composite Plate [J]. Journal of Mechanical Engineering, 2024, 60(4): 345-356. |
[14] | GAO Qiang, WANG Jian, ZHANG Yan, ZHENG Xuyang, LÜ Hao, YIN Guodong. Topology Optimization Approaches and Its Application and Prospect in Transportation Engineering [J]. Journal of Mechanical Engineering, 2024, 60(4): 369-390. |
[15] | TANG Jiuxing, SHI Lei, WU Chuansong, WU Mingxiao, GAO Song. Microstructure and Mechanical Properties of Double-side Friction Stir Welding Joint of Medium-thick Al/Cu Dissimilar Plate [J]. Journal of Mechanical Engineering, 2024, 60(20): 88-98. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||