[1] WANG Jianshan, WANG Gang, FENG Xiqiao, et al. Hierarchical chirality transfer in the growth of towel gourd tendrils[J]. Scientific Reports, 2013, 3(1): 3102. [2] GROSS P, LAURENS N, ODDERSHEDE L B, et al. Quantifying how DNA stretches, melts and changes twist under tension[J]. Nature Physics, 2011, 7(9): 731-6. [3] CHENG Liang, THOMAS A, GLANCEY J L, et al. Mechanical behavior of bio-inspired laminated composites[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(2): 211-20. [4] YU Xianglong, ZHOU Ji, LIANG Haiyi, et al. Mechanical metamaterials associated with stiffness, rigidity and compressibility: A brief review[J]. Progress in Materials Science, 2018, 94: 114-73. [5] FERNANDEZ-CORBATON I, ROCKSTUHL C, ZIEMKE P, et al. New twists of 3D chiral metamaterials[J]. Advanced Materials, 2019, 31(26): 1807742. [6] 朱一林, 江松辉, 于超. 增强六手臂缺失支柱手性拉胀超材料力学性能理论研究[J]. 力学学报, 2022, 54(10): 2733-2746. ZHU Yilin, JIANG Songhui, YU Chao. Mechanical modelling of enhanced hexa-missing rib chiralauxetic meta-materials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2733-2746. [7] FRENZEL T, KADIC M, WEGENER M. Three-dimensional mechanical metamaterials with a twist[J]. Science, 2017, 358(6366): 1072-1074. [8] COSSERAT E, COSSERAT F. Theorie des corps dédormables[J]. Nature, 1909, 81: 67. [9] ERINGEN A C. Microcontinuum field theories: I. Foundations and solids[M]. Springer Science & Business Media. 1999. [10] 李卉, 魏国崇, 姚红良, 等. 手性超材料惯容吸振器的扭转振动抑制研究[J]. 力学学报, 2023, 55(10): 2252-60. LI Hui, WEI Guochong, YAO Hongliang, et al. Research on torsional vibration suppression of chiral metamaterial inerter dynamic vibration absorber[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2252-60. [11] LEE H, JANG Y, CHOE J K, et al. 3D-printed programmable tensegrity for soft robotics[J]. Science Robotics, 2020, 5(45): eaay9024. [12] XU Weiyun, ZHANG Lei, ZHANG Boqin, et al. Crushing behavior of contact-aided AlSi10Mg sandwich structure based on chiral mechanical metamaterials[J]. International Journal of Mechanical Sciences, 2023, 260: 108636. [13] WU Wenwang, HU Wenxia, QIAN Guian, et al. BERTO F. Mechanical design and multifunctional applications of chiral mechanical metamaterials: A review[J]. Materials & Design, 2019, 180: 107950. [14] SHEIKH H M, MEIER T, BLANKENSHIP B, et al. Systematic design of Cauchy symmetric structures through Bayesian optimization[J]. International Journal of Mechanical Sciences, 2022, 236: 107741. [15] TABACU S, NEGREA R F, NEGREA D. Experimental, numerical and analytical investigation of 2D tetra-anti-chiral structure under compressive loads[J]. Thin-Walled Structures, 2020, 155: 106929. [16] CHEN Yi, FRENZEL T, ZHANG Quan, et al. Cubic metamaterial crystal supporting broadband isotropic chiral phonons[J]. Physical Review Materials, 2021, 5(2): 025201. [17] GAO Zhenyang, WANG Hongze, SUN Hua, et al. Additively manufactured high-energy-absorption metamaterials with artificially engineered distribution of bio-inspired hierarchical microstructures[J]. Composites Part B: Engineering, 2022, 247: 110345. [18] WANG Jin, LUO Xiaobo, WANG Kui, et al. On impact behaviors of 3D concave structures with negative Poisson's ratio[J]. Composite Structures, 2022, 298: 115999. [19] DUAN Shengyu, WEN Weibin, FANG Daining. A predictive micropolar continuum model for a novel three-dimensional chiral lattice with size effect and tension-twist coupling behavior[J]. Journal of the Mechanics and Physics of Solids, 2018, 121: 23-46. [20] XU Weiyun, LIU Zhao, WANG Liwei, et al. 3D chiral metamaterial modular design with highly-tunable tension-twisting properties[J]. Materials Today Communications, 2022, 30: 103006. [21] XU Weiyun, WANG Liwei, LIU Zhao, et al. General assembly rules for metamaterials with scalable twist effects[J]. International Journal of Mechanical Sciences, 2023, 259: 108579. [22] FRENZEL T, HAHN V, ZIEMKE P, et al. Large characteristic lengths in 3D chiral elastic metamaterials[J]. Communications Materials, 2021, 2(1): 4. [23] PHAM M S, LIU Chen, TODD I, et al. Damage-tolerant architected materials inspired by crystal microstructure[J]. Nature, 2019, 565(7739): 305-11. [24] ASHBY M F. The properties of foams and lattices[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2006, 364(1838): 15-30. [25] LIPTON J I, MACCURDY R, MANCHESTER Z, et al. Handedness in shearing auxetics creates rigid and compliant structures[J]. Science, 2018, 360(6389): 632-5. [26] JENETT B, CAMERON C, TOURLOMOUSIS F, et al. Discretely assembled mechanical metamaterials[J]. Science Advances, 2020, 6(47): eabc9943. [27] GOSWAMI D, ZHANG Yunlan, LIU Shuai, et al. Mechanical metamaterials with programmable compression-twist coupling[J]. Smart Materials and Structures, 2021, 30(1): 015005. [28] 应鹏飞. 基于结构激振的中高应变率材料力学试验方法与应用[D]. 北京: 清华大学, 2021. YING Pengfei. The methods and applications of intermediate-high strain rate mechanical tests based on structural vibration[D]. Beijing: Tsinghua University, 2021. [29] MENG Liang, SHI Jianxiong, YANG Chen, et al. An emerging class of hyperbolic lattice exhibiting tunable elastic properties and impact absorption through chiral twisting[J]. Extreme Mechanics Letters, 2020, 40: 100869. [30] JI Chen, LI Kun, ZHAN Jianbin, et al. The effects and utility of homogenization and thermodynamic modeling on microstructure and mechanical properties of SS316/IN718 functionally graded materials fabricated by laser-based directed energy deposition[J]. Journal of Materials Processing Technology, 2023, 319: 118084. [31] ZHAN Jianbin, WU Jinzhou, MA Ruijin, et al. Tuning the functional properties by laser powder bed fusion with partitioned repetitive laser scanning: Toward editable 4D printing of NiTi alloys[J]. Journal of Manufacturing Processes, 2023, 101: 1468-81. [32] ZIEMKE P, FRENZEL T, WEGENER M, et al. Tailoring the characteristic length scale of 3D chiral mechanical metamaterials[J]. Extreme Mechanics Letters, 2019, 32: 100553. [33] CUI Huachen, YAO Desheng, HENSLEIGH R, et al. Design and printing of proprioceptive three-dimensional architected robotic metamaterials[J]. Science, 2022, 376(6599): 1287-93. [34] SUN Tao, YANG Shuofei, LIAN Binbin. Finite and instantaneous screw theory in robotic mechanism[M/OL]. Singapore: Springer, 2020: 25-64[2023-07-28]. [35] QI Dexing, YU Huabin, LIU Ming, et al. Mechanical behaviors of SLM additive manufactured octet-truss and truncated-octahedron lattice structures with uniform and taper beams[J]. International Journal of Mechanical Sciences, 2019, 163: 105091. [36] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J]. Engineering Fracture Mechanics, 1985, 21(1): 31-48. [37] 雷经发, 葛永胜, 刘涛, 等. 激光选区熔化316L不锈钢动态力学性能研究[J]. 激光与光电子学进展, 2021, 58(23): 220-229. LEI Jingfa, GE Yongsheng, LIU Tao, et al. Research on dynamic mechanical properties of 316L stainless steel processed using selective laser melting[J]. Laser & Optoelectronics Process, 2021, 58(23): 220-9. [38] TAMER Y, TOROS S, OZTURK F. Numerical and experimental comparison of fractural characteristics of 316L stainless steel[J]. Journal of Materials Engineering and Performance, 2023, 32(3): 1103-18. [39] 谢卓文. SLM成形316L不锈钢试件断裂性能试验与数值模拟研究[D]. 大连: 大连理工大学, 2022. XIE Zhuowen. Experimental and numerical simulation research on fracture properties of SLM 316L stainless steel[D]. Dalian: Dalian University of Technology, 2022. [40] 韦雄棉, 王迪, 杨永强, 等.激光选区熔化钛合金多孔结构拉伸性能研究[J].中国激光, 2021, 48(18): 1802016. WEI Xiongmian, WANG Di, YANG Yongqiang, et al. Study on tensile properties of titanium alloy proous structure using selective laser melting[J]. Chinese Journal of Lasers, 2021, 48(18): 1802016. [41] XU Liang, QIAN Zhenghua. Topology optimization and de-homogenization of graded lattice structures based on asymptotic homogenization[J]. Composite Structures, 2021, 277: 114633. [42] MASKERY I, AREMU A O, PARRY L, et al. Effective design and simulation of surface-based lattice structures featuring volume fraction and cell type grading[J]. Materials & Design, 2018, 155: 220-32. [43] XING Jin, ZHAO Jieliang, NIU Qun, et al. Crashworthiness design and optimization of bamboo-inspired tube with gradient multi-cells[J]. Thin-Walled Structures, 2023, 191: 111034. [44] SIDDIQUE S H, HAZELL P J, WANG Hongxu, et al. Lessons from nature: 3D printed bio-inspired porous structures for impact energy absorption-A review[J]. Additive Manufacturing, 2022, 58: 103051. [45] WANG Erdong, YAO Ruyang, LI Qing, et al. Lightweight metallic cellular materials: A systematic review on mechanical characteristics and engineering applications[J]. International Journal of Mechanical Sciences, 2023, 291: 108795. |