Journal of Mechanical Engineering ›› 2025, Vol. 61 ›› Issue (3): 347-375.doi: 10.3901/JME.2025.03.347
GAO Zhuang1,2, LIU Yuxin1,2, ZHU Mingliang1,2, XUAN Fuzhen1,2
Received:
2024-02-12
Revised:
2024-07-23
Published:
2025-03-12
CLC Number:
GAO Zhuang, LIU Yuxin, ZHU Mingliang, XUAN Fuzhen. Research Progress on Design, Manufacturing and Fatigue Properties of Lattice Structures[J]. Journal of Mechanical Engineering, 2025, 61(3): 347-375.
[1] XIAO S,CHEN C,XIA Q,et al. Lightweight,strong,moldable wood via cell wall engineering as a sustain-able structural material[J]. Science,2021,374(6566):465-71. [2] WEGST U G K,BAI H,SAIZ E,et al. Bioinspired structural materials[J]. Nature Materials,2015,14(1):23-36. [3] TRAN M,GABERT L,HOOD S,et al. A lightweight robotic leg prosthesis replicating the biomechanics of the knee,ankle,and toe joint[J]. Science Robotics,2022,7(72):eabo3996. [4] 王军武,刘旭贺,王飞超,等. 航空航天用高性能超轻镁锂合金[J]. 军民两用技术与产品,2013,(6):21-24.WANG Junwu,LIU Xuhe,WANG Feichao,et al. High Per-formance ultralight magnesium-lithium alloy for aer-ospace applications[J]. Dual-use Technology and Products,2013,(6):21-24. [5] MARINO M,SABATINI R. Advanced lightweight aircraft design configurations for green operations [C]//Proceedings of the Practical Responses to Climate Change 2014(PRCC 2014). Barton:Engineers Australia,2014:1-9. [6] ORDOUKHANIAN E,MADNI A M. Blended wing body architecting and design:Current status and fu-ture prospects[J]. Procedia Computer Science,2014,28:619-625. [7] 范子杰,桂良进,苏瑞意. 汽车轻量化技术的研究与进展[J]. 汽车安全与节能学报,2014,5(1):1-16.FAN Zijie,GUI Liangjin,SU Ruiyi. Research and progress of automotive lightweight technology[J]. Journal of Automotive Safety and Energy Efficiency,2014,5(1):1-16. [8] ASKARI M,HUTCHINS D A,THOMAS P J,et al. Additive manufacturing of metamaterials:A review[J]. Additive Manufacturing,2020,36:101562. [9] 轩福贞,朱明亮,王国彪. 结构疲劳百年研究的回顾与展望[J]. 机械工程学报,2021,57(6):26-51.XUAN Fuzhen,ZHU Mingliang,WANG Guobiao. Review and pro-spect of 100-year research on structural fatigue[J]. Journal of Mechanical Engineering,2021,57(6):26-51. [10] 郝琪,张继伟. 车门结构优化设计的灵敏度分析研究[J]. 汽车技术,2010(5):40-44.HAO Qi,ZHANG Jiwei. Sensitivity analysis of door structure optimization design[J]. Automotive Technology,2010(5):40-44. [11] RAIS-ROHANI M,SOLANKI K,ACAR E,et al. Shape and sizing optimisation of automotive structures with deterministic and probabilistic design constraints[J]. International Journal of Vehicle Design,2010,54:309-338. [12] 严君. 基于OptiStruct碳纤维复合材料薄壁结构优化设计研究[D]. 太原:中北大学,2012.YAN Jun. Optimization design of carbon fiber compo-site thin-walled structure based on optistruct[D]. Taiyuan:North University of China,2012. [13] 李芳,凌道盛. 工程结构优化设计发展综述[J]. 工程设计学报(机械·设备和仪器的开发技术),2002(5):229-235.LI Fang,LING Daosheng. Review on the development of engineering structure optimization design[J]. Journal of Engineering Design (Development Technology of Machinery,Equipment and Instruments),2002(5):229-235. [14] SHIMODA M,TSUJI J. Shape optimization for weight reduction of automotive shell structures subject to a strength constraint:2007-01-3720[R]. New York:SAE Technical Papers,2017. [15] CEVIK M C,KANPOLAT E,REBBERT M. Shape optimization of a single cylinder engine crankshaft:2011-01-1077[R]. New York:SAE Technical Papers,2011. [16] MICHELL A G M. The limits of economy of materials in frame structures[J]. Philosophical Magazine,1904,8(47):589-597. [17] DORN W C. Automatic design of optimal structures[J]. Journal de Mecanique,1964,(3):25-52. [18] BENDSØE M P,KIKUCHI N. Generating optimal topologies in structural design using a homogenization method[J]. Computer Methods in Applied Mechanics and Engineering,1988,71(2):197-224. [19] BENDSØE M P. Optimal shape design as a material distribution problem[J]. Structural Optimization,1989,1(4):193-202. [20] 李光霁,刘新玲. 汽车轻量化技术的研究现状综述[J].材料科学与工艺,2020,28(5):47-61.LI Guangji,LIU Xinling. Review of research status of automotive lightweight technology[J]. Materials Science and Technology,2020,28(5):47-61. [21] XIE Y M,STEVEN G P. A simple evolutionary procedure for structural optimization[J]. Computers & Structures,1993,49(5):885-896. [22] OSHER S,SETHIAN J A. Fronts propagating with curvature-dependent speed:Algorithms based on Hamilton-Jacobi formulations[J]. Journal of Computational Physics,1988,79(1):12-49. [23] SETHIAN J A,WIEGMANN A. Structural boundary design via level set and immersed interface methods[J]. Journal of Computational Physics,2000,163(2):489-528. [24] WANG M Y,WANG X,GUO D. A level set method for structural topology optimization[J]. Computer Methods in Applied Mechanics and Engineering,2003,192(1):227-246. [25] YUNKANG S,DEQING Y. A new method for structural topological optimization based on the concept of independent continuous variables and smooth model[J]. Acta Mechanica Sinica,1998,14(2):179-185. [26] 杨德庆,刘正兴,隋允康. 连续体结构拓扑优化设计的ICM方法[J]. 上海交通大学学报,1999(6):98-100.YANG Deqing,LIU Zhengxing,SUI Yunkang. ICM method for topology optimization design of continuum structures[J]. Journal of Shanghai Jiao Tong University,1999(6):98-100. [27] ZHANG W,CHEN J,ZHU X,et al. Explicit three dimensional topology optimization via Moving Morphable Void (MMV) approach[J]. Computer Methods in Applied Mechanics and Engineering,2017,322:590-614. [28] GUO X,ZHANG W,ZHONG W. Doing topology optimization explicitly and geometrically-A new moving morphable components based framework[J]. Journal of Applied Mechanics,2014,81(8):081009. [29] SHI G,GUAN C,QUAN D,et al. An aerospace bracket designed by thermo-elastic topology optimization and manufactured by additive manufacturing[J]. Chinese Journal of Aeronautics,2020,33(4):1252-1259. [30] 王瑞显,冯振伟,马灵犀,等. 小卫星一体化星敏支架拓扑优化[J]. 南京航空航天大学学报,2021,53(S01):67-70.WANG Ruixian,FENG Zhenwei,MA Lingxi,et al. Topology optimization of integrated satellite-sensitive scaffold for small satellites[J]. Journal of Nanjing University of Aeronautics and Astronautics,2021,53(S01):67-70. [31] 吴云峰,曹文利,史淑娟,等. 面向增材制造和拓扑优化的火箭管路支架设计制造研究[J]. 热加工工艺,2023,52(11):109-13,17.WU Yunfeng,CAO Wenli,SHI Shujuan,et al. Research on design and manufacture of rocket pipeline support for additive manufacturing and topology optimization[J]. Hot Working Technology,2023,52(11):109-13,17. [32] LI H,LIU R,WANG H,et al. Ant-inspired bionic design method for the support structure of the Fengyun-3 satellite payload infilled with lattice structure[J]. Materials,2023,16(2):736. [33] GU D,SHI X,POPRAWE R,et al. Material-structure-performance integrated laser-metal additive manufacturing[J]. Science,2021,372(6545):eabg1487. [34] 顾冬冬,张红梅,陈洪宇,等. 航空航天高性能金属材料构件激光增材制造[J]. 中国激光,2020,47(5):32-55.GU Dongdong,ZHANG Hongmei,CHEN Hongyu,et al. Laser additive manufacturing of aerospace high-performance metal components[J]. Chinese Journal of Lasers,2020,47(5):32-55. [35] GU H,SHTERENLIKHT A,PAVIER M. Brittle fracture of three-dimensional lattice structure[J]. Engineering Fracture Mechanics,2019,219:106598. [36] CHOUGRANI L,PERNOT J P,VERON P,et al. Parts internal structure definition using non-uniform patterned lattice optimization for mass reduction in additive manufacturing[J]. Engineering with Computers,2019,35(1):277-289. [37] ZHOU H,CAO X,LI C,et al. Design of self-supporting lattices for additive manufacturing[J]. Journal of the Mechanics and Physics of Solids,2021,148:104298. [38] 雷鹏福. 点阵结构的航空构件轻量化设计及优化技术研究[D]. 南京:南京航空航天大学,2020.LEI Pengfu. Research on lightweight design and opti-mization technology of aeronautical components with lattice structure[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2020. [39] SCHAEDLER T A,CARTER W B. Architected cellular materials[J]. Annual Review of Materials Re-search,2016,46(1):187-210. [40] PLOCHER J,PANESAR A. Review on design and structural optimisation in additive manufacturing:Towards next-generation lightweight structures[J]. Materials & Design,2019,183:108164. [41] KOCAŃDA A,SADŁOWSKA H. Automotive com-ponent development by means of hydroforming[J]. Archives of Civil and Mechanical Engineering,2008,8(3):55-72. [42] GIBSON L J,ASHBY M F. Cellular solids:Structure and properties[M]. Cambridge:Cambridge University Press,1997. [43] 方岱宁. 轻质点阵材料力学与多功能设计[M]. 北京:科学出版社,2009.FANG Daining. Mechanics and multi-function design of lightweight lattice materials[M]. Beijing:Science Press,2009. [44] GIBSON L J. The hierarchical structure and mechanics of plant materials[J]. Journal of the Royal Society Interface,2012,9(76):2749-2766. [45] LAUNEY M E,BUEHLER M J,RITCHIE R O. On the mechanistic origins of toughness in bone[J]. Annual Review of Materials Research,2010,40(1):25-53. [46] 荷马,王焕生. 荷马史诗·奥德赛[M]. 北京:人民文学出版社,1997.HOMER,WANG Huansheng. Homer's Odyssey[M]. Beijing:The People's Literature Publishing House,1997. [47] 荷马,罗念生,王焕生. 荷马史诗·伊利亚特[M]. 上海:上海人民出版社,2016.HOMER,LUO Niansheng,WANG Huansheng. Homer's Epic Poem Iliad[M]. Shanghai:Shanghai People's Publishing House,2016 [48] SCHAEDLER T A,JACOBSEN A J,CARTER W B. Toward lighter,stiffer materials[J]. Science,2013,341(6151):1181-1182. [49] EMMELMANN C,SANDER P,KRANZ J,et al. Laser additive manufacturing and bionics:Redefining lightweight design[J]. Physics Procedia,2011,12:364-368. [50] YU Z,XIN R,XU Z,et al. Shock-resistant and energy-absorbing properties of bionic niti lattice structure manufactured by SLM[J]. Journal of Bionic Engineering,2022,19(6):1684-1698. [51] WANG Y,WANG L,MA Z-D,et al. A negative Pois-son's ratio suspension jounce bumper[J]. Materials & Design,2016,103:90-99. [52] ASHBY M F,EVANS A,FLECK N A,et al. Metal foams:A design guide[J]. Applied Mechanics Reviews,2002,23(6):119-121. [53] DU PLESSIS A,RAZAVI N,BENEDETTI M,et al. Properties and applications of additively manufactured metallic cellular materials:A review[J]. Progress in Materials Science,2022,125:100918. [54] MAXWELL J C,XL V. On reciprocal figures and dia-grams of forces[J]. The London,Edinburgh,and Dublin Philosophical Magazine and Journal of Science,1864,27(182):250-261. [55] DESHPANDE V S ,ASHBY M F ,FLECK N A. Foam topology:Bending versus stretching dominated architectures[J]. Acta Materialia,2001,49(6):1035-1040. [56] DESHPANDE V S,FLECK N A,ASHBY M F. Effective properties of the octet-truss lattice material[J]. Journal of the Mechanics & Physics of Solids,2001,49(8):1747-1769. [57] MARTIN L,MACIEJ M,HUGH W,et al. Inconel 625 lattice structures manufactured by selective laser melting (SLM):Mechanical properties,deformation and failure modes[J]. Materials & Design,2018,157:179-199. [58] ASHBY M F. The properties of foams and lattices[J]. Philos Trans A Math Phys Eng Sci,2006,364(1838):15-30. [59] LI S J,XU Q S,WANG Z,et al. Influence of cell shape on mechanical properties of Ti-6Al-4V mesh-es fabricated by electron beam melting method[J]. Acta Biomaterialia,2014,10(10):4537-4547. [60] 曾元辉. 面向增材制造的功能梯度TPMS点阵结构设计及力学性能研究[D]. 重庆:重庆大学,2022.ZENG Yuanhui. Design and mechanical properties of functional gradient tpms lattice for additive manu-facturing[D]. Chongqing:Chongqing University,2022. [61] HAN L,CHE S. An overview of materials with triply periodic minimal surfaces and related geometry:From biological structures to self-assembled systems[J]. Advanced Materials,2018,30(17):1705708. [62] SCHWARZ H A,SCHWARZ H. Bestimmung einer speciellen minimalfläche[J]. Gesammelte Mathe-matische Abhandlungen:Erster Band,1890:6-91. [63] 王俣. 基于TPMS的骨支架优化设计[D]. 大连:大连理工大学,2022.WANG M. Optimal design of bone scaffold based on TPMS[D]. Dalian:Dalian University of Technology,2022. [64] SCHOEN A H. Infinite periodic minimal surfaces without self-intersections[M]. Washington:National Aeronautics and Space Administration,1970. [65] BHATE D,PENICK C A,FERRY L A,et al. Classifi-cation and selection of cellular materials in mechan-ical design:Engineering and biomimetic approaches[J]. Designs,2019,3(1):19-21. [66] TORQUATO S,DONEV A. Minimal surfaces and multifunctionality[J]. Proceedings of The Royal Society A,2004,460(2047):1849-1856. [67] LI G Y,ZHI B. Bioinspired heat exchangers based on triply periodic minimal surfaces for supercritical CO2 cycles[J]. Applied Thermal Engineering:Design,Processes,Equipment,Economics,2020,179:115686. [68] MASKERY I,STURM L,AREMU A O,et al. Insights into the mechanical properties of several triply periodic minimal surface lattice structures made by polymer additive manufacturing[J]. Polymer,2018,152:62-71. [69] LEE D-W,KHAN K A,ABU AL-RUB R K. Stiffness and yield strength of architectured foams based on the schwarz primitive triply periodic minimal surface[J]. International Journal of Plasticity,2017,95:1-20. [70] BERGER J B,WADLEY H N G,MCMEEKING R M. Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness[J]. Nature,2017,543(7646):533-537. [71] BONATTI C,MOHR D. Mechanical performance of additively-manufactured anisotropic and isotropic smooth shell-lattice materials:Simulations & experiments[J]. Journal of the Mechanics and Physics of Solids,2019,122:1-26. [72] HAN S C,LEE J W,KANG K. A new type of low density material:Shellular[J]. Advanced Mate-rials,2015,27(37):5506-5511. [73] TANCOGNE-DEJEAN T,DIAMANTOPOULOU M,GORJI M B,et al. 3D plate-lattices:An emerging class of low-density metamaterial exhibiting opti-mal isotropic stiffness[J]. Advanced Materials,2018,30(45):1803334. [74] CHEN L-Y,LIANG S-X,LIU Y,et al. Additive manufacturing of metallic lattice structures:Unconstrained design,accurate fabrication,fascinated performances,and challenges[J]. Materials Science and Engineering:R:Reports,2021,146:100648. [75] ZHANG L,SONG B,FU J J,et al. Topology-optimized lattice structures with simultaneously high stiffness and light weight fabricated by selective laser melting:Design,manufacturing and characterization[J]. Journal of manufacturing processes,2020,56:1166-1177. [76] XIAO Z,YANG Y,XIAO R,et al. Evaluation of topology-optimized lattice structures manufactured via selective laser melting[J]. Materials & Design,2018,143(APR.):27-37. [77] DU Y,LI H,LUO Z,et al. Topological design optimization of lattice structures to maximize shear stiff-ness[J]. Advances in Engineering Software,2017,112:211-21. [78] VINCENT J F V,BOGATYREVA O A,BOGATYREV N R,et al. Biomimetics:Its practice and theory[J]. Journal of The Royal Society Inter-face,2006,3(9):471-82. [79] HU K,LIN K,GU D,et al. Mechanical properties and deformation behavior under compressive loading of selective laser melting processed bio-inspired sandwich structures[J]. Materials Science and Engineering,2019,762:138089. [80] YAN D,CHANG J,ZHANG H,et al. Soft three-dimensional network materials with rational bio-mimetic designs[J]. Nature Communications,2020,11(1):1180. [81] HAO P,DU J. Energy absorption characteristics of bio-inspired honeycomb column thinwalled structure under impact loading[J]. Journal of the Mechanical Behavior of Biomedical Materials,2018,79:301-8. [82] 张冬云,刘智远,胡松涛,等. 基于激光选区熔化的点阵结构设计、性能及应用研究进展[J]. 航空制造技术,2023,66(10):36-49.ZHANG Dongyun,LIU Zhiyuan,HU Songtao,et al. Research progress of lattice structure design,performance and application based on laser selective melting[J]. Aeronautical Manufacturing Technology,2023,66(10):36-49. [83] ZHANG L,FEIH S,DAYNES S,et al. Energy absorption characteristics of metallic triply periodic minimal surface sheet structures under compressive loading[J]. Additive Manufacturing,2018,23:505-515. [84] MASKERY I,ABOULKHAIR N T,AREMU A O,et al. Compressive failure modes and energy absorption in additively manufactured double gyroid lattices[J]. Additive Manufacturing,2017,16:24-29. [85] PANESAR A,ABDI M,HICKMAN D,et al. Strategies for functionally graded lattice structures derived using topology optimisation for additive manufacturing[J]. Additive Manufacturing,2018,19:81-94. [86] 金鑫. 面向激光增材制造的变密度多胞结构优化设计与建模研究[D]. 长沙:国防科技大学,2018.JIN Xin. Optimal design and modeling of variable density multi-cell structures for laser additive manufacturing[D]. Changsha:National University of Defense Technology,2018. [87] DU PLESSIS A,YADROITSAVA I,YADROITSEV I,et al. Numerical comparison of lattice unit cell designs for medical implants by additive manufacturing[J]. Virtual and Physical Prototyping,2018,13(4):266-281. [88] MASKERY I,HUSSEY A,PANESAR A,et al. An investigation into reinforced and functionally graded lattice structures[J]. Journal of Cellular Plastics,2017,53:151-165. [89] BAI L,GONG C,CHEN X,et al. Mechanical properties and energy absorption capabilities of functionally graded lattice structures:Experiments and simulations[J]. International Journal of Mechanical Sciences,2020,182:105735. [90] LIU F,MAO Z,ZHANG P,et al. Functionally graded porous scaffolds in multiple patterns:New design method,physical and mechanical properties[J]. Materials & Design,2018,160:849-60. [91] LI S,ZHAO S,HOU W,et al. Functionally graded Ti-6Al-4V meshes with high strength and energy absorption[J]. Advanced Engineering Materials,2016,18(1):34-38. [92] MASKERY I,AREMU A O,PARRY L,et al. Effective design and simulation of surface-based lattice structures featuring volume fraction and cell type grading[J]. Materials & Design,2018,155:220-232. [93] ZHANG J,SONG B,YANG L,et al. Microstructure evolution and mechanical properties of TiB/Ti6Al4V gradient-material lattice structure fabricated by laser powder bed fusion[J]. Composites Part B Engineering,2020,202:108417. [94] 赵芳垒,敬石开,刘晨燕. 基于局部相对密度映射的变密度多孔结构设计方法[J]. 机械工程学报,2018,54(19):121-128.ZHAO Fanglei,JING Shikai,LIU Chenyan. Variable density porous structure design method based on local relative density mapping[J]. Journal of Mechanical Engineering,2018,54(19):121-128. [95] 易长炎,柏龙,陈晓红,等. 金属三维点阵结构拓扑构型研究及应用现状综述[J]. 功能材料,2017,48(10):10055-10065.YI Changyan,BAI Long,CHEN Xiaohong,et al. A review on the research and application of topological configurations of metal three-dimensional lattice structures[J]. Journal of Functional Materials,2017,48(10):10055-10065. [96] 顾冬冬,张红梅,陈洪宇,等. 航空航天高性能金属材料构件激光增材制造[J]. 中国激光,2020,47(5):32-55.GU Dongdong,ZHANG Hongmei,CHEN Hongyu,et al. Laser additive manufacturing of high performance metal material components for aerospace[J]. Chinese Journal of Lasers,2020,47(5):32-55. [97] SONG G H,JING S K,ZHAO F L,et al. Design optimization of irregular cellular structure for additive manufacturing[J]. Chinese Journal of Mechanical Engineering,2017,30(5):1184-1192. [98] TAO W. Design of lattice structure for additive manufacturing[C]//2016 International Symposium on Flexible Automation (ISFA). Cleveland:IEEE,2016:325-332. [99] DAL FABBRO P,ROSSO S,CERUTI A,et al. Analysis of a preliminary design approach for conformal lattice structures[J]. Applied Sciences,2021,11(23):11449. [100] 汪志鹏. 基于等效模型的点阵结构仿真技术研究[D]. 南京:南京航空航天大学,2020.WANG Zhipeng. Research on simulation technology of lattice structure based on equivalent model[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2020. [101] SAMOILENKO M,SEERS P,TERRIAULT P,et al. Design,manufacture and testing of porous materials with ordered and random porosity:Application to porous medium burners[J]. Applied Thermal Engineering,2019,158:113724. [102] AREMU A,BRENNAN-CRADDOCK J P J,PANESAR A,et al. A voxel-based method of constructing and skinning conformal and functionally graded lattice structures suitable for additive manufacturing[J]. Additive Manufacturing,2017,13:1-13. [103] HAO L. Design and additive manufacturing of cellular lattice structures[C]//The International Conference on Advanced Research in Virtual and Rapid Prototy (VRAP),Leiria:Taylor & Francis Group,2011:249-254. [104] 姚远,郭明. 模型体结构可控装配方法[J]. 计算机辅助设计与图形学学报,2014,26(10):1886-1893.YAO Yuan,GUO Ming. Controllable assembly method of model body structure[J]. Journal of Computer-Aided Design and Graphics,2014,26(10):1886-1893. [105] HU J,LUO Y,LIU S. Two-scale concurrent topology optimization method of hierarchical structures with self-connected multiple lattice-material domains[J]. Composite Structures,2021,272:114224. [106] WANG X,QIN R,CHEN B. Mechanical properties and energy absorption capability of a topology-optimized lattice structure manufactured via selective laser melting under axial and offset loading[J]. Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2022,236:10221-10236. [107] ZHANG P,TOMAN J,YU Y,et al. Efficient design-optimization of variable-density hexagonal cellular structure by additive manufacturing:Theory and validation[J]. Journal of Manufacturing Science and Engineering,2015,137(2):021004. [108] SPEIRS M,VAN HOOREWEDER B,VAN HUMBEECK J,et al. Fatigue behaviour of NiTi shape memory alloy scaffolds produced by SLM,a unit cell design comparison[J]. Journal of the Mechanical Behavior of Biomedical Materials,2017,70:53-59. [109] GORGULUARSLAN R M,GANDHI U N,MANDAPATI R,et al. Design and fabrication of periodic lattice-based cellular structures[J]. Computer-Aided Design and Applications,2016,13(1):50-62. [110] 段晟昱,王潘丁,刘畅,等. 增材制造三维点阵结构设计、优化与性能表征方法研究进展[J]. 航空制造技术,2022,65(14):36-48,57.DUANG Shengyu,WANG Panding,LIU Chang,et al. Research progress of 3D lattice structure design,optimization and performance characterization methods for additive manufacturing[J]. Aeronautical Manufacturing Technology,2022,65(14):36-48,57. [111] JAFFERSON J M,SHARMA H. Design of 3D printable airless tyres using NTopology[J]. Materials Today:Proceedings,2021,46:1147-1160. [112] HELOU M,KARA S. Design,analysis and manufacturing of lattice structures:An overview[J]. International Journal of Computer Integrated Manufacturing,2018,31(3):243-261. [113] LU T,ZHANG Q. Novel strengthening methods for ultralightweight sandwich structures with periodic lattice cores[J]. Science China Technological Sciences,2010,53(3):875-877. [114] MUN J,YUN B-G,JU J,et al. Indirect additive manufacturing based casting of a periodic 3D cellular metal – Flow simulation of molten aluminum alloy[J]. Journal of Manufacturing Processes,2015,17:28-40. [115] LI Q,CHEN E,BICE D R,et al. Mechanical proper-ties of cast Ti-6Al-2Sn-4Zr-2Mo lattice block structures[J]. Advanced Engineering Materials,2008,10:939-942. [116] SENNEWALD C,KAINA S,WECK D,et al. Metal sandwiches and metal-matrix-composites based on 3D woven wire structures for hybrid lightweight construction[J]. Advanced Engineering Materials,2014,16(10):1234-1242. [117] LEE M G,KANG K J. A cellular metal composed of straight wires[J]. Procedia Materials Science,2014,4:169-174. [118] KHODA B,AHSAN A. A novel rapid manufacturing process for metal lattice structure[J]. 3D Print Addit Manuf,2021,8(2):111-125. [119] QUEHEILLALT D T,WADLEY H N G. Titanium alloy lattice truss structures[J]. Materials & Design,2009,30(6):1966-1975. [120] SCHAEDLER T A,JACOBSEN A J,TORRENTS A,et al. Ultralight metallic microlattices[J]. Science,2011,334(6058):962-965. [121] N'JOCK M Y,CAMPOSILVAN E,GREMILLARD L,et al. Characterization of 100Cr6 lattice structures produced by robocasting[J]. Materials & Design,2017,121:345-354. [122] JIANG S,SUN F,ZHANG X,et al. Interlocking orthogrid:An efficient way to construct lightweight lattice-core sandwich composite structure[J]. Composite Structures,2017,176:55-71. [123] RIMOLI J J,TALAMINI B,WETZEL J J,et al. Wet-sand impulse loading of metallic plates and corrugated core sandwich panels[J]. International Journal of Impact Engineering,2011,38(10):837-848. [124] PENG E,WEI X,GARBE U,et al. Robocasting of dense yttria-stabilized zirconia structures[J]. Journal of Materials Science,2017,53:247-273. [125] WANG X-T,LI X-W,MA L. Interlocking assembled 3D auxetic cellular structures[J]. Materials & Design,2016,99:467-476. [126] POLLACK J,SINGH A,et al. Towards space from Hilbert space:Finding lattice structure in finite-dimensional quantum systems[J]. Quantum Studies:Mathematics and Foundations,2019,6(2):181-200. [127] VANEKER T,BERNARD A,MORONI G,et al. Design for additive manufacturing:Framework and methodology[J]. CIRP Annals,2020,69(2):578-599. [128] 刘书田,李取浩,陈文炯,等. 拓扑优化与增材制造结合:一种设计与制造一体化方法[J]. 航空制造技术,2017(10):26-31.LIU Shutian,LI Quhao,CHEN Wenjiong,et al. Combination of topology optimization and additive manufacturing:An integrated design and manufacturing method[J]. Aeronautical Manufacturing Technology,2017(10):26-31. [129] 刘伟,李能,周标,等. 复杂结构与高性能材料增材制造技术进展[J]. 机械工程学报,2019,55(20):128-151,159.LIU Wei,LI Neng,ZHOU Biao,et al. Advances in additive manufacturing technology of complex structures and high performance materials[J]. Journal of Mechanical Engineering,2019,55(20):128-151,159. [130] GU D,SHI X,POPRAWE R,et al. Material- structure-performance integrated laser-metal additive manufacturing[J]. Science,2021,372(6545):eabg1487. [131] 朱家威,潘威,黄士争,等. 高速高强熔融沉积成型技术研究进展[J]. 中国塑料,2023,37(8):118-126.ZHU Jiawei,PAN Wei,HUANG Shizheng,et al. Research progress of high speed and high strength fused deposition molding technology[J]. China Plastics,2023,37(8):118-126. [132] ZIAEE M,CRANE N B. Binder jetting:A review of process,materials,and methods[J]. Additive Manufacturing,2019,28:781-801. [133] BLAKEY-MILNER B,GRADL P,SNEDDEN G,et al. Metal additive manufacturing in aerospace:A review[J]. Materials & Design,2021,(12):110008. [134] JIA D,FANCHUN L I,ZHANG Y. 3D-printing process design of lattice compressor impeller based on residual stress and deformation[J]. Scientific Reports,2020,10(1):600. [135] BICI M,BRISCHETTO S,CAMPANA F,et al. Development of a multifunctional panel for aerospace use through SLM additive manufacturing[J]. Procedia CIRP,2018,67:215-220. |
[1] | WANG Hanming, DONG Qingbing, CHEN Zhuang, ZHAO Bo, SHI Xiujiang. Life Prediction of Planetary Gearbox Based on Competing Failure Mechanisms and Experimental Study [J]. Journal of Mechanical Engineering, 2025, 61(3): 284-298. |
[2] | YANG Chunpan, WANG Xiaowei, LI Xuesong, YANG Dongqing, HUANG Yong, PENG Yong, WANG Kehong. Study on Microstructure and Properties of 18Ni-350 Maraging Steel by Wire and Arc Addictive Manufacturing with Ultrasonic Impact Treatment [J]. Journal of Mechanical Engineering, 2025, 61(2): 162-171. |
[3] | SHANG Yaoxing, JIANG Chaofan, YU Tian, LI Yao, WANG Yeshuo, JIAO Zongxia. Method of Forward Design of Fiber Reinforced Lamination for Carbon Fiber Hydraulic Cylinder [J]. Journal of Mechanical Engineering, 2025, 61(2): 338-345. |
[4] | YANG Chaoxiong, ZHANG Zhaodong, SHA Yuyao, LIU Liming. Study on Dimensional Rule and Properties of Aluminum Alloy Additive Manufacturing with Inclined Substrate [J]. Journal of Mechanical Engineering, 2025, 61(1): 326-334. |
[5] | XU Xiangyang, REN Bo, HUANG Kaisheng, JIA Hanjie, ZHU Caichao. Calculation Method for Contact Fatigue Life of Herringbone Planetary Gears Based on Iterative Coupling of Dynamic Meshing Force and Oil Film Pressure [J]. Journal of Mechanical Engineering, 2025, 61(1): 199-208. |
[6] | WU Jie, DANG Jiaqiang, LI Yugang, CHEN Dong, AN Qinglong, WANG Haowei, CHEN Ming. Study on Strengthening Mechanism and Anti-fatigue Performance of Stress Ultrasonic Rolling [J]. Journal of Mechanical Engineering, 2024, 60(9): 127-136. |
[7] | LIANG Peng, ZHAO Wenzhuo, WU Tonghai, RAN Yi. Ultrasonic Echo Characteristics and On-machine Detection Method of Small Tooth Cracks in Generator Rotors [J]. Journal of Mechanical Engineering, 2024, 60(8): 11-21. |
[8] | ZHANG Yunshu, WU Bintao, ZHAO Yun, DING Donghong, PAN Zengxi, LI Huijun. Research Progress in the Numerical Simulation of Heat and Mass Transfer during Wire Arc Additive Manufacturing [J]. Journal of Mechanical Engineering, 2024, 60(8): 65-80. |
[9] | WU Jizhan, WEI Peitang, WU Shaojie, LIU Huaiju, ZHU Caichao. Rolling Contact Fatigue Performance Prediction and Surface Integrity Optimization of Aviation Gear Steel [J]. Journal of Mechanical Engineering, 2024, 60(8): 81-93. |
[10] | DONG Qingbing, CHEN Zhuang, LUO Zhentao, ZHANG Jie, WEI Jing. Fatigue Life Prediction and Fracture Behavior Study of Fretting Interface at Three-dimensional Line Contact [J]. Journal of Mechanical Engineering, 2024, 60(8): 107-120. |
[11] | YANG Yang, WANG Zekui, CHEN Chen, MA Hua, YANG Zhinan, ZHANG Fucheng. Effect of Ni and Cu Alloying on Microstructure and Mechanical Properties of Fe-Mn-Al-C Austenitic Lightweight Steel [J]. Journal of Mechanical Engineering, 2024, 60(8): 154-164. |
[12] | YANG Siyu, XU Lianyong, ZHAO Lei, HAN Yongdian. Research on Corrosion Fatigue Performance and Fatigue Fracture Mechanism of Pre-corrosion EH36 Steel Welded Joints [J]. Journal of Mechanical Engineering, 2024, 60(8): 204-211. |
[13] | ZOU Xiaolong, YANG Guangxue, ZHANG Bo, LI Guoshun, ZHANG Yichao, CHEN Can, ZHANG Shujun. Study on Dynamic Stress Characteristics of Bogie Frame of High-speed EMU [J]. Journal of Mechanical Engineering, 2024, 60(8): 212-223. |
[14] | CHEN Wei, ZHAO Jie, ZHU Libin, CAO Haibo. Research Progress on Additive Manufacturing of Low Activation Steels [J]. Journal of Mechanical Engineering, 2024, 60(7): 312-333. |
[15] | DU Wenbo, LI Xiaoliang, LI Xia, HU Shenheng, ZHU Sheng. Research Status of Additive Friction Stir Deposition Process [J]. Journal of Mechanical Engineering, 2024, 60(7): 374-384. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||