[1] LU B, WANG L. Development of additive manufacturing technology and industry in China[J]. Chinese Journal of Engineering Science, 2022, 24(4): 202-211. [2] 杨冰, 廖贞, 吴圣川, 等. 增材制造技术发展和在先进轨道交通装备中的应用展望[J]. 交通运输工程学报, 2021, 21(1): 132-153. YANG Bing, LIAO Zhen, WU Shengchuan, et al. Development of additive manufacturing technology and its application prospect in advanced rail transit equipment[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 132-153. [3] SHAMSAEI N, YADOLLAHI A, BIAN L, et al. An overview of direct laser deposition for additive manufacturing;Part Ⅱ: Mechanical behavior, process parameter optimization and control[J]. Additive Manufacturing, 2015, 8: 12-35. [4] 林鑫, 黄卫东. 高性能金属构件的激光增材制造[J]. 中国科学: 信息科学, 2015, 45(9): 1111-26. LIN Xin, HUANG Weidong. Laser additive manufacturing of high-performance metal components[J]. Scientia Sinica Information, 2015, 45(9): 1111-1126. [5] EDWARDS P, RAMULU M. Fatigue performance evaluation of selective laser melted Ti-6Al-4V[J]. Materials Science and Engineering: A, 2014, 598: 327-337. [6] 易敏, 常珂, 梁晨光, 等. 增材制造微结构演化及疲劳分散性计算[J]. 力学学报, 2021, 53(12): 3263-3273. YI Min, CHANG Ke, LIANG Chenguang, et al. Computational study of evolution and fatigue dispersity of microstructures by additive manufacturing[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3263-3273. [7] 代俊林, 吴世品, 张宇, 等. 增材制造金属材料的疲劳性能研究进展[J]. 精密成形工程, 2024, 16(1): 1-13. DAI Junlin, WU Shipin, ZHANG Yu, et al. Research progress on fatigue properties of additive manufactured metal materials[J]. Journal of Netshape Forming Engineering, 2024, 16(1): 1-13. [8] 吴圣川, 胡雅楠, 杨冰, 等. 增材制造材料缺陷表征及结构完整性评定方法研究综述[J]. 机械工程学报, 2021, 57(22): 3-34. WU Shengchuan, HU Yanan, YANG Bing, et al. Review on defect characterization and structural integrity assessment method of additively manufactured materials[J]. Journal of Mechanical Engineering, 2021, 57(22): 3-34. [9] 陈泽坤, 蒋佳希, 王宇嘉, 等. 金属增材制造中的缺陷、组织形貌和成形材料力学性能[J]. 力学学报, 2021, 53(12): 3190-3205. CHEN Zekun, JIANG Jiaxi, WANG Yujia, et al. Defects, microstructures and mechanical properties of materials fabricated by metal additive manufacturing[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3190-3205. [10] 奥妮, 何子昂, 吴圣川, 等. 激光增材制造AlSi10Mg合金的力学性能研究进展[J]. 焊接学报, 2022, 43(9): 1-19. AO Ni, HE Ziang, WU Shengchuan, et al. Recent progress on the mechanical properties of laser additive manufacturing AlSi10Mg alloy[J]. Transactions of the China Welding Institution, 2022, 43(9): 1-19. [11] FATEMI A, MOLAEI R, PHAN N. Multiaxial fatigue of additive manufactured metals: Performance, analysis, and applications[J]. International Journal of Fatigue, 2020, 134: 105479. [12] ZHAN Z, LI H, LAM K Y. Development of a novel fatigue damage model with AM effects for life prediction of commonly-used alloys in aerospace[J]. International Journal of Mechanical Sciences, 2019, 155: 110-124. [13] SHERIDAN L, GOCKEL J E, SCOTT-EMUAKPOR O E. Stress-defect-life interactions of fatigued additively manufactured alloy 718[J]. International Journal of Fatigue, 2021, 143: 106033. [14] 廉艳平, 王潘丁, 高杰, 等. 金属增材制造若干关键力学问题研究进展[J]. 力学进展, 2021, 51(3): 648-701. LIAN Yanping, WANG Panding, GAO Jie, et al. Fundamental mechanics problems in metal additive manufacturing: A state-of-art review[J]. Advances in Mechanics, 2021, 51(3): 648-701. [15] CUTOLO A, LAMMENS N, VANDEN BOER K, et al. Fatigue life prediction of a L-PBF component in Ti-6Al-4V using sample data, FE-based simulations and machine learning[J]. International Journal of Fatigue, 2022, 167: 107276. [16] BAO H, WU S, WU Z, et al. A machine-learning fatigue life prediction approach of additively manufactured metals[J]. Engineering Fracture Mechanics, 2021, 242: 107508. [17] 詹志新, 高同州, 刘传奇, 等. 基于数据驱动的增材制造铝合金的疲劳寿命预测[J]. 固体力学学报, 2023, 44(3): 381-394. ZHAN Zhixin, GAO Tongzhou, LIU Chuanqi, et al. Data-driven fatigue life prediction of additive manufacturing aluminum alloys[J]. Chinese Journal of Solid Mechanics, 2023, 44(3): 381-394. [18] ZHANG M, SUN C N, ZHANG X, et al. High cycle fatigue life prediction of laser additive manufactured stainless steel: A machine learning approach[J]. International Journal of Fatigue, 2019, 128: 105194. [19] PAN S J, YANG Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 22(10): 1345-1359. [20] SUN X, LI J, ZENG B, et al. Small-sample day-ahead power load forecasting of integrated energy system based on feature transfer learning[J]. Control Theory & Applications, 2021, 38(1): 63-72. [21] 曹宁, 江志农, 高金吉. 小样本下基于迁移学习的轴承状态识别方法[J]. 噪声与振动控制, 2020, 40(5): 89-94, 132. CAO Ning, JIANG Zhinong, GAO Jinji. Rolling bearing state recognition based on transfer learning under small samples[J]. Noise and Vibration Control, 2020, 40(5): 89-94, 132. [22] 高勋章, 刘迪阳, 杨宜. 基于特征迁移和原型网络的小样本雷达像识别[J]. 现代雷达, 2022, 44(4): 50-55. GAO Xunzhang, LIU Diyang, YANG Yi. Radar image recognition with few samples based on feature transfer and prototypical network[J]. Modern Radar, 2022, 44(4): 50-55. [23] CHENG Longwei, WANG Kai, TSUNG Fugee. A hybrid transfer learning framework for in-plane freeform shape accuracy control in additive manufacturing[J], ⅡSE Trans, 2020, 53(3): 298-312. [24] AKSHAY J T, MATEUSZ J, EDUARDO B, et al. Probabilistic physics-guided transfer learning for material property prediction in extrusion deposition additive manufacturing[J]. Computer Methods in Applied Mechanics and Engineering, 2024, 419(1): 116660. [25] 李治文, 张志芬, 张帅, 等. 基于空气传播声发射与深度迁移学习的激光粉末床熔融缺陷在线监测[J]. 精密成形工程, 2023, 15(11): 76-88. LI Zhiwen, ZHANG Zhifen, ZHANG Shuai, et al. Online monitoring for laser powder bed fusion defects based on air-borne acoustic emission and deep transfer learning[J]. Journal of Netshape Forming Engineering, 2023, 15(11): 76-88. [26] PAN S J, TSANG I W, KWOK J T, et al. Domain adaptation via transfer component analysis[J]. IEEE Transactions on Neural Networks, 2011, 22(2): 199-210. [27] ROHANI Bastami A, BASHARI A. Rolling element bearing diagnosis using spectral kurtosis based on optimized impulse response wavelet[J]. Journal of Vibration and Control, 2019, 26(3-4): 175-185. [28] LIU C, GRYLLIAS K. A semi-supervised support vector data description-based fault detection method for rolling element bearings based on cyclic spectral analysis[J]. Mechanical Systems and Signal Processing, 2020, 140: 106682. [29] YANG S, ZHANG Y, ZHU Y, et al. Representation learning via serial autoencoders for domain adaptation[J]. Neurocomputing, 2019, 351: 1-9. [30] LI X, ZHANG W, DING Q. Cross-Domain fault diagnosis of rolling element bearings using deep generative neural networks[J]. IEEE Transactions on Industrial Electronics, 2019, 66(7): 5525-5534. [31] WEI D, HAN T, CHU F, et al. Weighted domain adaptation networks for machinery fault diagnosis[J]. Mechanical Systems and Signal Processing, 2021, 158: 107744. [32] BORGWARDT K M, GRETTON A, RASCH M J, et al. Integrating structured biological data by Kernel maximum mean discrepancy[J]. Bioinformatics, 2006, 22(14): 49-57. [33] CHEN S X, ZHOU L, NI Y Q. Wheel condition assessment of high-speed trains under various operational conditions using semi-supervised adversarial domain adaptation[J]. Mechanical Systems and Signal Processing, 2022, 170: 108853. [34] LI W, XING X, FU L, et al. Application of improved grid search algorithm on SVM for classification of tumor gene[J]. International Journal of Multimedia and Ubiquitous Engineering, 2014, 9(11): 181-188. [35] HAN P, WANG W, SHI Q, et al. A combined online-learning model with K-means clustering and GRU neural networks for trajectory prediction[J]. Ad Hoc Networks, 2021, 117: 102476. [36] 崔佳旭, 杨博. 贝叶斯优化方法和应用综述[J]. 软件学报, 2018, 29(10): 3068-3090. CUI Jiaxu, YANG Bo. Survey on Bayesian optimization methodology and applications[J]. Journal of Software, 2018, 29(10): 3068-3090. [37] SHI Tao, SUN Jingyu, LI Jianghua, et al. Machine learning based very-high-cycle fatigue life prediction of AlSi10Mg alloy fabricated by selective laser melting[J]. International Journal of Fatigue, 2023, 171: 107585. [38] LEI Liming, LI Bo, WANG Haijie, et al. High-temperature high-cycle fatigue performance and machine learning-based fatigue life prediction of additively manufactured Hastelloy X[J]. International Journal of Fatigue, 2024, 178: 108012. [39] ZHANG M, SUN C N, ZHANG X, et al. Predictive models for fatigue property of laser powder bed fusion stainless steel 316L[J]. Materials & Design, 2018, 145: 42-54. [40] ZHANG M, SUN C N, ZHANG X, et al. Fatigue and fracture behaviour of laser powder bed fusion stainless steel 316L: Influence of processing parameters[J]. Materials Science and Engineering: A, 2017, 703: 251-261. [41] ZHANG M, SUN C N, ZHANG X, et al. Elucidating the relations between monotonic and fatigue properties of laser powder bed fusion stainless steel 316L[J]. JOM, 2017, 70(3): 390-395. [42] ZHANG M, SUN C N, ZHANG X, et al. High cycle fatigue and ratcheting interaction of laser powder bed fusion stainless steel 316L: Fracture behaviour and stress-based modelling[J]. International Journal of Fatigue, 2019, 121: 252-264. [43] LIU Z, WU H. Data-driven fatigue life prediction method based on the influence of parameters[J]. Journal of Mechanical Engineering, 2023, 59(4): 71-79. [44] ZHANG Y, YANG X, SHARDT Y A W, et al. A KPI-based probabilistic soft sensor development approach that maximizes the coefficient of determination[J]. Sensors (Basel), 2018, 18(9): 3058. [45] LU H, MA X, MA M, et al. Energy price prediction using data-driven models: A decade review[J]. Computer Science Review, 2021, 39: 100356. |