Journal of Mechanical Engineering ›› 2023, Vol. 59 ›› Issue (16): 32-53.doi: 10.3901/JME.2023.16.032
Previous Articles Next Articles
WANG Shuancheng1, YANG Bing1, LIAO Zhen1, XIAO Shoune1, KANG Guozheng2, YANG Guangwu1, ZHU Tao1
Received:
2022-08-25
Revised:
2022-12-19
Online:
2023-08-20
Published:
2023-11-15
CLC Number:
WANG Shuancheng, YANG Bing, LIAO Zhen, XIAO Shoune, KANG Guozheng, YANG Guangwu, ZHU Tao. Research on Short Fatigue Crack Initiation and Propagation of Metallic Materials:A Review[J]. Journal of Mechanical Engineering, 2023, 59(16): 32-53.
[1] 杨新华,陈传尧.疲劳与断裂[M].武汉:华中科技大学出版社,2019.YANG Xinhua, CHEN Chuanyao. Fatigue and fracture[M]. Wuhan:Huazhong University of Science and Technology Press,2019. [2] 洪友士,方飚.疲劳短裂纹萌生及发展的细观过程和理论[J].力学进展,1993,23(4):468-486.HONG Youshi,FANG Biao. Meso process and theory of fatigue short crack initiation and development[J].Advances in Mechanics,1993,23(4):468-486. [3] 洪友士,顾子晏,方飙.疲劳短裂纹的损伤特征和计算机模拟[J].机械强度,1995,17(3):88-93.HONG Youshi, GU Ziyan, FANG Biao. Damage characteristics and computer simulation of fatigue short crack[J]. Mechanical Strength,1995,17(3):88-93. [4] ZHENG C. Growth behavior of short fatigue cracks for aluminum-lithium alloy 8090[J]. Chinese Journal of Aeronautics,1991,4(4):380-385. [5] 吴志学,孙训方.缺口试样疲劳短裂纹行为研究[J].应用力学学报,1998,15(3):74-79.WU Zhixue,SUN Xunfang. Study on fatigue short crack behavior of notched specimens[J]. Journal of Applied Mechanics,1998,15(3):74-79. [6] PEARSON S. Initiation of fatigue cracks in commercial aluminium alloys and the subsequent propagation of very short cracks[J]. Engineering Fracture Mechanics,1975,7(2):235-247. [7] DE LOS RIOS E R,TANG Z,MILLER K J. Short crack fatigue behavior in a medium carbon steel[J]. Fatigue&Fracture of Engineering Materials and Structures,1984,7(2):97-108. [8] SUH C M,RITCHIE R O,KANG Y G. Growth behavior of short surface fatigue cracks in 21/4 Cr-1 Mo steel[J].KSME Journal,1989,3(2):78-85. [9] HUSSIAN K,TAUQIR A,HASHMI F H,et al. Short fatigue crack growth behavior in a ferritic-bainitic steel[J].Metallurgical and Materials Transactions A,1994,25(11):2421-2424. [10] MAJIDI B. Fatigue life and short crack behavior in Ti-6Al-4V alloy; interactions of foreign object damage,stress,and temperature[J]. Metallurgical and Materials Transactions A,2008,39(4):772-777. [11] American Society for Testing and Materials. ASTM E647-15. Standard test method for measurement of fatigue crack growth rates[S]. West Conshohocken:ASTM International,2015. [12] KITAGAWA H,TAKAHASHI S. Applicability of fracture mechanics to very small cracks or the cracks in the early stage[C]//Proceedings of Second International Conference on Mechanical Behaviour of Materials,Metals Park:American Society for Metals,1976:627-631. [13] PEARSON S. Initiation of fatigue cracks in commercial aluminium alloys and the subsequent propagation of very short cracks[J]. Engineering Fracture Mechanics,1975,7(2):235-247. [14] ZHU X M,GONG C Y,JIA Y F,et al. Influence of grain size on the small fatigue crack initiation and propagation behaviors of a nickel-based superalloy at 650℃[J].Journal of Materials Science&Technology,2019,35(8):1607-1617. [15] YANG B,LI Y F,QIN Y H,et al. Fatigue crack growth behaviour of precipitate-strengthened CuNi2Si alloy under different loading modes[J]. Materials, 2020,13(10):2228. [16] MILLER K J. The behaviour of short fatigue cracks and their initiation Part I-A review of two recent books[J].Fatigue&Fracture of Engineering Materials and Structures,1987,10(1):75-91. [17] MILLER K J,DE LOS RIOS E R. The behavior of short fatigue cracks[M]. London:Mechanical Engineering Publications Ltd,1986. [18] RITCHIE R O,LANKFORD J. Small fatigue cracks[M].Warrendale:Publication of the Metallurgical Society,Inc.,1986. [19] WU Z X,LU W,XU H. Study on fatigue damage below the fatigue limit and the coaxing effects[J]. Acta Metallurgica Sinica,1996(3):5. [20] 李舜酩.机械疲劳与可靠性设计[M].北京:科学出版社,2006.LI Shunming. Mechanical fatigue and reliability design[M]. Beijing:Science Press,2006. [21] 高镇同,熊峻江.疲劳可靠性[M].北京:北京航空航天大学出版社,2000.GAO Zhentong,XIONG Junjiang. Fatigue reliability[M].Beijing:Beihang University Press,2000. [22] LIAO Z Q,LEONARDO M S,ZHANG T,et al. In-situ stretching patterned graphene nanoribbons in the transmission electron microscope[J]. Scientific Reports,2017,7(1):211. [23] HAMERS M F, PENNOCK G M, DRURY M R.Scanning electron microscope cathodoluminescence imaging of subgrain boundaries, twins and planar deformation features in quartz[J]. Physics and Chemistry of Minerals,2017,44(4):263-275. [24] XIE Y,SOHN S,SCHROERS J,et al. Direct observation through in situ transmission electron microscope of early states of crystallization in nanoscale metallic glasses[J].JOM,2017,69(11):2187-2191. [25] YANG B,DAI S,WU Y Y,et al. Short fatigue crack behavior of LZ50 axle steel under rotating-bending cyclic loading[J]. Strength of Materials,2018,50(1):193-202. [26] 高红俐,郑欢斌,姜伟,等.基于图像处理的疲劳裂纹扩展长度在线测量方法[J].中国机械工程,2016,27(7):917-924.GAO Hongli,ZHENG Huanbin,JIANG Wei,et al. Online measurement method of fatigue crack propagation length based on image processing[J]. China Mechanical Engineering,2016,27(7):917-924. [27] 王潍. 42CrMo钢疲劳短裂纹演化行为及疲劳寿命预测的研究[D].济南:山东大学,2008.WANG Wei. Study on evolution behavior of short fatigue crack and fatigue life prediction of 42Cr Mo steel[D].Jinan:Shandong University,2008. [28] TAKESHI D,PERTER B L,JOHN K T. Inclusion size effect on the fatigue crack propagation mechanism and fracture mechanics of a superalloy[J]. Metallurgical Transactions A,1992,23(2):519-526. [29] TERENT'EV V F,GEROV M V,Vl LADISLAVSKAYA Y E,et al. Structural state and mechanical behavior of Fe-Cr-Ni maraging steels[J]. Russian Metallurgy(Metally),2020(4):426-433. [30] PARK S,NAGAO S,SUGAHARA T,et al. Heel crack propagation mechanism of cold-rolled Cu/Al clad ribbon bonding in harsh environment[J]. Journal of Materials Science:Materials in Electronics,2015,26(9):7277-7289. [31] 谭志捷.用交流电位法测定钢试样开裂点的试验[J].金属学报,1979,15(2):283-291.TAN Zhijie. Experimental study on crack point determination of steel samples by AC potential method[J].Acta Metall. Sin.,1979,15(2):283-291. [32] 杜金强,何宇廷,崔荣洪,等.基于电位法原理的金属结构裂纹监测传感器研究[J].南京航空航天大学学报,2010,42(3):387-391.DU Jinqiang,HE Yuting,CUI Ronghong,et al. Research on metal structure crack monitoring sensor based on potentiometric principle[J]. J. Nanjing University Aero.Astro.,2010,42(3):387-391. [33] 王亮,黄新跃,郭广平.直流电位法检测高温合金的疲劳裂纹扩展性能[J].理化检验(物理分册),2011,47(8):480-482,486.WANG Liang, HUANG Xinyue, GUO Guangping.Fatigue crack growth behavior of superalloy by direct current potential method[J]. Physical and Chemical Testing(Volume),2011,47(8):480-482,486. [34] 李晓阳,韩赞东,冉刚,等.基于交流电位法的疲劳裂纹长度测量方法与装置[J].理化检验(物理分册),2015,51(8):542-545,559.LI Xiaoyang,HAN Zandong,RAN Gang,et al. Fatigue crack length measurement method and device based on AC potential method[J]. Physical And Chemical Testing(Volume 1),2015,51(8):542-545,559. [35] RICHARD A D. Determination of fluoride by analate additions potentiometry[J]. Mikrochimica Acta,1969,57(3):611-614. [36] LUKYANOVA E V,ZOTOV A V. Determination of the NaFaq association constant for the NaF-NaCl-H2O System at 25-75℃by means of potentiometry[J]. Russian Journal of Physical Chemistry A,2017,91(4):672-677. [37] 代占鑫,胡博,余业山,等.直流电位法对Q235钢材表面裂纹的检测仿真[J].表面技术,2018,47(1):236-241.DAI Zhanxin,HU Bo,YU Yeshan,et al. Detection and simulation of Q235 steel surface crack by direct current potential method[J]. Surface Technology,2018,47(1):236-241. [38] 杨迪迪,施祎,杨晓光,等.电位法测量微缺口试样的数值分析[J].推进技术,2020,41(7):1587-1593.YANG Didi,SHI Yi,YANG Xiaoguang,et al. Numerical analysis of micro-notched specimens measured by potentiometric method[J]. J. Propulsion Technology,2020,41(7):1587-1593. [39] 薛河,苟思育,倪陈强,等.基于直流电位降法的裂纹监测仪器系统设计[J].传感器与微系统,2020,39(11):85-88.XUE He,GOU Siyu,NI Chenqiang,et al. Design of crack monitoring instrument system based on DC potential drop method[J]. Sensor and Microsystem,2020,39(11):85-88. [40] LI J C,BIRBILIS N,BUCHHEIT R G. Electrochemical assessment of interfacial characteristics of intermetallics phases present in aluminum alloy 2024-T3[J]. Corros.Sci.,2015,101:155-164. [41] KELES H,EMIR D M,KELES M. A comparative study of the corrosion inhibition of low carbon steel in HCl solution by animine compound and its cobalt complex[J].Corros. Sci.,2015,101:19-31. [42] BABU M N,MUKHOPADHVAV C K,SASIKALA G.Fatigue crack growth study in P91 and 316LN steels using acoustic emission[J]. Transactions of the Indian Institute of Metals,2019,72(12):3067-3080. [43] LI J Y,JIA Z H,QI G. Study on the microdamage evolution of two aluminum alloys under different stress states based on acoustic emission[J]. Data-Enabled Discovery and Applications,2019,3(1):6. [44] NIKULIN S A,KHANZHIN V G,NIKITIN A V,et al.Analysis of the fracture kinetics and mechanisms of 20GL steel having different strengths using the acoustic emission parameters[J]. Russian Metallurgy(Metally),2017,2017(10):895-900. [45] GENNA S,PAPA I,LEONE C. A preliminary study on the characterization of laser-bending process of AISI 304 steel sheets by acoustic emission technique[J]. The International Journal of Advanced Manufacturing Technology,2017,92(9-12):4111-4119. [46] ARAI Y,EMI T,FREDRIKSSON H,et al. In-situ observed dynamics of peritectic solidification and δ/γtransformation of Fe-3 to 5 at. Pct Ni alloys[J].Metallurgical and Materials Transactions A,2005,36A:3065-3074. [47] LIU Z Z,KOBAYASHI Y,YANG J,et al."In-situ"observation of the delta/gamma phase transformation on the surface of low carbon steel containing phosphorus at various cooling rates[J]. ISIJ International,2006,46(6):847-853. [48] HUANG F X,WANG X H,ZHANG J M,et al. In Situ observation of solidification process of AISI 304austenitic stainless steel[J]. Journal of Iron and Steel Research(International),2008,15(6):78-82. [49] PARK J H,PARK J G,MIN D J,et al. In situ observation of the dissolution phenomena of SiC particle in CaO,Si O2,MnO slag[J]. Journal of the European Ceramic Society,2010,30(15):3181-3186. [50] LEE J G,KIM J Y,JEON J B,et al. Interpretation of stretch-flangeability using nanoindentation and in-situ fracture observation in dual-phase steels[C]//Technical Program of the 10th Pacific Rim International Conference on Advanced Materials and Processing(PRICM 10),2019:1. [51] TIAN J Y,XU G,JIANG Z Y,et al. In-situ observation of martensitic transformation in a Fe-C-Mn-Si bainitic steel during austempering[J]. Metals and Materials International,2019,26(7):1-12. [52] KIM S D,PARK J Y,PARK S J,et al. Direct observation of dislocation plasticity in high-Mn lightweight steel by in-situ TEM[J]. Scientific Reports,2019,9(1):284-286. [53] JORDON J B, BEMARD J D, NEWMAN J C.Quantifying microstructurally small fatigue crack growth in an aluminum alloy using a silicon-rubber replica method[J]. International Journal of Fatigue,2012,36(1):206-210. [54] WU M Z,ZHANG J W,MEI G M,et al. Effects of fine particle shot peening treatment on fatigue properties of Al-7Si-0.3Mg alloy[J]. Journal of Materials Engineering and Performance,2019,28(5):2600-2609. [55] SUN G Q,XU G S,SHANG D G,et al. Welding parameter selection and short fatigue crack growth of dissimilar aluminum alloy friction stir welded joint[J].Welding in the World Le Soudage Dans Le Monde,2019,63(6):1761-1769. [56] 赵永翔.低周疲劳短裂纹行为和可靠性分析[D].成都:西南交通大学,1998.ZHAO Yongxiang. Behavior and reliability analysis of short cracks in low cycle fatigue[D]. Chengdu:Southwest Jiaotong University,1998. [57] ZHAO Y X,YANG B,ZHANG W H. A short fatigue crack growth law for 1Cr18Ni9Ti weld metal[J]. Key Engineering Materials,2006,324(1):571-578. [58] 赵永翔,杨冰,高庆. 1Cr18Ni9Ti焊缝疲劳短裂纹的形态演化[J].核动力工程,2006,27(6):56-61.ZHAO Yongxiang, YANG Bing, GAO Qing.Morphological evolution of fatigue short Cracks in1Cr18Ni9Ti Weld[J]. Nuclear Power Engineering,2006,27(6):56-61. [59] YANG B, ZHAO Y X. Experimental research on dominant effective short fatigue crack behavior for railway LZ50 axle steel[J]. International Journal of Fatigue,2010,35(1):71-78. [60] 杨冰. LZ50车轴钢的随机疲劳短裂纹行为研究[D].成都:西南交通大学,2011.YANG Bing. Research on random fatigue short crack behavior of LZ50 axle steel[D]. Chengdu:Southwest Jiaotong University,2011. [61] YANG B,MA B Q,ZHAO Y X,et al. Short fatigue crack behavior at different maintenance times for LZ50 steel[J].Strength of Materials,2015,47(1):114-121. [62] YANG B,MA B Q,WU Y Y,et al. An improved projection method for fatigue parameters determination of metal structures based on spherical direction cosine group construction[J]. Strength of Materials,2016,48(1):127-134. [63] 梁赛. LZ50车轴钢在扭转载荷作用下的疲劳短裂纹行为研究[D].成都:西南交通大学,2018.LIANG Sai. Study on fatigue short crack behavior of LZ50 axle steel under torsional load[D]. Chengdu:Southwest Jiaotong University,2018. [64] YANG B,LIAO Z,MA B Q,et al. Statistical evolution of short fatigue crack growth rate for LZ50 axle steel[J].Mechanika,2017,23(2):168-175. [65] 孟飞.拉扭应力幅比对车轴钢疲劳短裂纹行为的影响[D].成都:西南交通大学,2019.MENG Fei. Effect of tension-torsion stress amplitude ratio on fatigue short crack behavior of axle steel[D].Chengdu:Southwest Jiaotong University,2019. [66] 徐锦岗.加载路径对LZ50钢疲劳短裂纹行为的影响[D].成都:西南交通大学,2020.XU Jingang. Effect of loading path on fatigue short crack behavior of LZ50 steel[D]. Chengdu:Southwest Jiaotong University,2020. [67] YANG B,LI Y F,QIN Y H,et al. Fatigue crack growth behaviour of precipitate-strengthened CuNi2Si alloy under different loading modes[J]. Materials, 2020,13(10):2228. [68] 钟群鹏,张峥,扈延光,等.金属疲劳弧线和疲劳沟线的物理数学模型[J].机械工程学报,1999,35(3):7-11.ZHONG Qunpeng,ZHANG Zheng,HU Yanguang,et al.Physical and mathematical models of metal fatigue arcs and fatigue grooves[J]. Journal of Mechanical Engineering,1999,35(3):7-11. [69] 盛光敏.应变疲劳循环软化机制的观察、确证及定量估测[J].理化检测-物理分册,1997,33(7):17-19.SHENG Guangmin. Observation, confirmation and quantitative estimation of cyclic softening mechanism of strain fatigue[J]. Physical and Chemical Testing Part I Physics,1997,33(7):17-19. [70] 徐濒.疲劳强度[M].北京:高等教育出版社,1988.XU Bin. Fatigue strength[M]. Beijing:Higher Education Press,1988. [71] 赵少汴,王忠保.疲劳设计[M].北京:机械工业出版社,1992.ZHAO Shaobian,WANG Zhongbao. Fatigue design[M].Beijing:China Machine Press,1992. [72] MILLER K J,柯伟,韩玉梅,等.金属疲劳-过去、现在和未来(一)[J].机械强度,1993,15(1):77-80.MILLER K J,KE Wei,HAN Yumei,et al. Metal fatigue:Past,present and future(I)[J]. Journal of Mechanical Strength,1993,15(1):77-80. [73] KUNKLER B,DUBER O,KSTER P,et al. Modelling of short crack propagation-transition from stage I to stage II[J]. Engineering Fracture Mechanics,2008,75(3-4):715-725. [74] CHRIST H J, DUBER O, FRITZEN C P, et al.Propagation behaviour of microstructural short fatigue cracks in the high-cycle fatigue regime[J]. Computational Materials Science,2009,46(3):561-565. [75] BOTVINA L R,PETROVA I M,GADOLINA I V,et al.High-cycle fatigue fracture of a low-carbon steel after its long-term aging[J]. Inorganic Materials,2010,46(14):1570-1577. [76] BOTVINA L R,NESTERENKO G I,SOLDATENKOV A P, et al. Development of short fatigue cracks in aluminum alloy 2524-T3 specimens[J]. Russian Metallurgy(Metally),2017,4:322-329. [77] OBRTLIK K,POLAK J,HAJEK M. Short fatigue crack behaviour in 316L stainless steel[J]. International Journal of Fatigue,1997,19(6):471-475. [78] GAO N,BROWN M W,MILLER K J,et al. An effective method to investigate short crack growth behaviour by reverse bending testing[J]. International Journal of Fatigue,2007,29(3):565-574. [79] KAMAYA M. Influence of grain boundaries on short crack growth behaviour of IGSCC[J]. Fatigue&Fracture of Engineering Materials and Structures,2004,27(6):513-521. [80] NEWMAN J C,WU X R,SWAIN M H. Small-crack growth and fatigue life predictions for high-strength aluminium alloys. Part II:crack closure and fatigue analyses[J]. Fatigue&Fracture of Engineering Materials and Structures,2000,23:59-72. [81] NALLA R K, CAMPBELL J P, RITCHIE R O.Mixed-mode,high-cycle fatigue-crack-growth thresholds in Ti-6Al-4V:Role of bimodal and lamellar microstructures[J]. Journal of Materials Science&Technology,2001,32(3):497-503. [82] HONG Y S,LU Y H,ZHENG Z M. Initiation and propagation of short fatigue cracks in a weld metal[J].Fatigue&Fracture of Engineering Materials and Structures,1989,12:323-331. [83] OBRTLIK K,POLAK J,HAJEK M. Short fatigue crack behaviour in 316L stainless steel[J]. International Journal of Fatigue,1997,19(6):471-475. [84] CHEN Z,DALY S H. Active slip system identification in polycrystalline metals by digital image correlation(DIC)[J]. Experimental Mechanics,2017,57(1):115-127. [85] JONATHAN W P,MICHAEL D R,NIMA S. Influence of microstructure on fatigue crack nucleation and microstructurally short crack growth of an austenitic stainless steel[J]. Materials Science and Engineering A,2017,707:657-667. [86] ZHANG K, WU X H, DAVIES, et al. Effect of microtexture on short crack propagation in two-phase titanium alloys[J]. International Journal of Fatigue,2017,104:206-220. [87] JAMES M R,MORRIS W L. Effect of fracture surface roughness on growth of short fatigue cracks[J].Metallurgical Transactions A,1983,14(1):153-155. [88] MIN B K,RAJ R. A mechanism of intergranular fracture during high-temperature fatigue[C]//ASTM Symposium on Fatigue Mechanisms, May 22, 1978, Cornell University,Ithaca,New York:ASTM International,1979,569-591. [89] GAO N P,BROWN M W,MILLER K J,et al. An effective method to investigate short crack growth behaviour by reverse bending testing[J]. International Journal of Fatigue,2007,29(3):565-574. [90] BJERKEN C,MELIN S. A study of the influence of grain boundaries on short crack growth during varying load using a dislocation technique[J]. Engineering Fracture Mechanics,2004,71(15):2215-2227. [91] LI Y X,GAO P F,YU J Y,et al. Mesoscale deformation mechanisms in relation with slip and grain boundary sliding in TA15 titanium alloy during tensile deformation[J]. Journal of Materials Science&Technology,2022,98:72-86. [92] SATO E,MASUDA H,SUGINO Y,et al. Local accommodation processes of superplastic grain boundary sliding:Their direct observation in two-dimensional grain boundary sliding[J]. Defect and Diffusion Forum,2018,4695:155-160. [93] SATO E,MASUDA H,SUGINO Y,et al. Measurement of the critical size of inclusions initiating contact fatigue cracks and its application in bearing steel[J]. Wear,1991,147(2):285-294. [94] 叶裕恭,洪友士.韧性断裂裂纹尖端的物理特征和力学行为[J].力学进展,1989,19(3):320-335.YE Yugong,HONG Youshi. Physical characteristics and mechanical behavior of crack tip in ductile fracture[J].Advances in Mechanics,1989,19(3):320-335. [95] CHRIST H J,DUBER O,FRITZEN C P,et al.Propagation behaviour of microstructural short fatigue cracks in the high-cycle fatigue regime[J].Computational Materials Science,2009,46(3):561-565. [96] WU Z X. Short fatigue crack parameters describing the lifetime of unnotched steel specimens[J]. International Journal of Fatigue,2001,23(4):363-369. [97] KOSHIRO M,YUTO N,YUKI Y,et al. Observation of crack originating from non-metallic inclusions in furnace-induction heated SUJ2 steel under one-point rolling contact fatigue at high contact pressure[J].Materials Science Forum,2021,6242:3-7. [98] TELESMAN J,GABB T P,KANTZOS P T,et al. Effect of a large population of seeded alumina inclusions on crack initiation and small crack fatigue crack growth in Udimet 720 nickel-base disk superalloy[J]. International Journal of Fatigue,2021,142:105953. [99] IRWIN G R. Crack-extension force for a part-through crack in a plate[J]. Journal of Applied Mechanics,Transactions ASME,1960,29(4):651-654. [100] PARIS P,ERDOGAN F. A critical analysis of crack propagation laws[J]. Journal of Fluids Engineering,1963,85(4):528-533. [101] WALKER E K. The effect of stress ratio during crack propagation and fatigue for 2024-T3 and 7075-T6aluminum[J]. ASTM International,2009,1:1-14. [102] FORMAN R G, KEARNEY V E, ENGLE R M.Numerical analysis of crack propagation in cyclic loaded structures[J]. Journal of Basic Engineering,Trans.ASME(Series D),1967,89:459-464. [103] 聂宏. Miner公式和Manson-Coffin公式的能量基础[J].航空学报,1993,14(5):310-312.NIE Hong. Energy basis of Miner's formula and Manson-Coffin's formula[J]. Acta Aeronautica Et Astronautica Sinica,1993,14(5):310-312. [104] HOBSON P D. The formulation of a crack growth equation for short cracks[J]. Blackwell Publishing Ltd,1982,5(4):323-327. [105] HOBSON P D, BROWN M W, RIOS E R. The behaviour of short fatigue cracks[M]. London:Mechanical Engineering Publications Ltd,1986. [106] MILLER K J. The behaviour of short fatigue cracks and their initiation part II-A general summary[J]. Blackwell Publishing Ltd,1987,10(2):93-113. [107] PARKER A P. Fundamentals of deformation and fracture[J]. Journal of Mechanical Working Technology,1989,18(1):123-124. [108] MILLER K J,SMITH R F. Mechanical behaviour of materials[C]//Proceedings of the Third International Conference,Cambridge,England,20-24 August 1979.Pergamon Press,1980. [109] SUN B,XU Y L,LI Z X. Multi-scale fatigue model and image-based simulation of collective short cracks evolution process[J]. Computational Materials Science,2016,117:24-32. [110] SUN B,XU Y L,LI Z X. Multi-scale model for linking collective behavior of short and long cracks to continuous average fatigue damage[J]. Engineering Fracture Mechanics,2016,157:141-153. [111] MAYEN J, ABUNDEZ A, PEREYRA I, et al.Comparative analysis of the fatigue short crack growth on Al 6061-T6 alloy by the exponential crack growth equation and a proposed empirical model[J]. Engineering Fracture Mechanics,2017,177:203-217. [112] HASSANIPOUR M,WATANABE S,HIRAYAMA K,et al. Effects of 3D microstructural distribution on short crack growth behavior in two bimodal Ti-6Al-4V alloys[J]. Materials Science and Engineering,2019,766(C):138264. [113] PROUDHON H,LI J,LUDWIG W,et al. Simulation of short fatigue crack propagation in a 3D experimental microstructure[J]. Advanced Engineering Materials,2017,19(8):1600721. [114] FENG Y Y,HU S S,WANG D P,et al. Formation of short crack and its effect on fatigue properties of ultrasonic peening treatment S355 steel[J]. Materials&Design,2016,89:507-515. [115] MAZANOVA V,POLAK J. Initiation and growth of short fatigue cracks in austenitic Sanicro 25 steel[J].Fatigue&Fracture of Engineering Materials&Structures,2018,41:1529-1545. [116] MIKADO H,ISHIHARA S,OGUMA N,et al. On the short surface fatigue crack growth behavior in a fine-grained WC-Co cemented carbide[J]. Metals,2017,7:254. [117] ZHU D P,ZHANG W,YUAN H,et al. 3D grain-based mesoscale modeling of short fatigue crack growth for bridge weldments considering crack-front evolution[J].Journal of Engineering Mechanics, 2020, 146(2):04019133. [118] BANG D J,INCE A,TANG L Q. A modification of UniGrow 2-parameter driving force model for short fatigue crack growth[J]. Fatigue&Fracture of Engineering Materials&Structures,2019,42:45-60. [119] BANG D J,INCE A,NOBAN M. Modeling approach for a unified crack growth model in short and long fatigue crack regimes[J]. International Journal of Fatigue,2019,128:105182. [120] ZHANG J H,YANG S,LIN J W. A nonlinear continuous damage model based on short-crack concept under variable amplitude loading[J]. Fatigue&Fracture of Engineering Materials&Structures,2016,39:79-94. [121] BAG A,LEVESQUE M,BROCHU M. Effect of shot peening on short crack propagation in 300M steel[J].International Journal of Fatigue,2020,131(C):105346. [122] SUN K P,SUN Q C,ZHANG Y Z,et al. A pragmatic approach to predict fatigue strength concerning the short crack behavior in VHCF[J]. International Journal of Fatigue,2020,135:105561. [123] ZHU J G,XIE H M. Interfacial residual stress analysis of thermal spray coatings by miniature ring-core cutting combined with DIC method[J]. Experimental Mechanics,2014,54(2):127-136. [124] PATRIARCA L, FILIPPINI M, BERETTA S.Short-crack thresholds and propagation in an AISI 4340steel under the effect of SP residual stresses[J].Fatigue&Fracture of Engineering Materials&Structures,2018,41:1275-1290. [125] LIU X,LIU J X,ZUO Z X,et al. The effect of wear on short crack propagation under fretting conditions[J].International Journal of Mechanical Sciences,2019,157-158:552-560. [126] KOLITSCH S,PIPPAN R. Crack driving forces for short cracks:The effect of work hardening[J]. Engineering Fracture Mechanics,2018,187:262-271. [127] YOU C,ACHINTHA M,HE B Y,et al. A numerical study of the effects of shot peening on the short crack growth behaviour in notched geometries under bending fatigue tests[J]. International Journal of Fatigue,2017,103(10):99-111. [128] LI H Y,SUN H L,BOWEN P,et al. Effects of compressive residual stress on short fatigue crack growth in a nickel-based superalloy[J]. International Journal of Fatigue,2018,108:53-61. [129] ZHAO X F,SHANG D G,SUN Y J,et al. Multiaxial fatigue life prediction based on short crack propagation model with equivalent strain parameter[J]. Journal of Materials Engineering and Performance,2018,27:324-332. [130] ARTHUR M,YANG Z. The growth of short fatigue cracks under compressive and/or tensile cyclic loading[J].Metallurgical Transactions A,1991,22(5):1079. [131] ELBER W. Fatigue crack closure under cyclic tension[J].Engineering Fracture Mechanics,1970,2(1):37-45. [132] BUDIANSKY B,HUTCHINSON J W. Analysis of closure in fatigue crack growth[J]. Journal of Applied Mechanics,1978,45(2):267-276. [133] LUGO M,DANIEWICZ S R,NEWMAN J C. A mechanics based study of crack closure measurement techniques under constant amplitude loading[J].International Journal of Fatigue,2011,33(2):186-193. [134] KUJAWSKI D. Estimations of stress intensity factors for small cracks at notches[J]. Fatigue&Fracture of Engineering Materials and Structures,1991,14(10):953-965. [135] WU S C,XU Z W,YU C,et al. A physically short fatigue crack growth approach based on low cycle fatigue properties[J]. International Journal of Fatigue,2017,103:185-195. [136] ALFREDSSON B,OBERG M,LAI J F. Propagation of physically short cracks in a bainitic high strength bearing steel due to fatigue load[J]. International Journal of Fatigue,2016,90(9):166-180. [137] FOLETTI S,COREA F,ROBBOLINI S,et al. Short cracks growth in low cycle fatigue under multiaxial in-phase loading[J]. International Journal of Fatigue,2018,107(2):49-59. [138] HUTAR,PAVEL,PODUSKA,et al. Short fatigue crack behaviour under low cycle fatigue regime[J].International Journal of Fatigue,2017,103(10):207-215. [139] GAUR V,ENOKI M,YOMOGIDA S. Physically short and long-crack growth behavior of MIG welded Al-5.8%Mg alloy[J]. Engineering Fracture Mechanics,2019,209:301-316. [140] MENG L,YANG M H,CHEN X H,et al. Physically short fatigue crack growth from notch described by plasticity-corrected stress intensity factor[J].International Journal of Mechanical Sciences,2020,176:105544. [141] ZHOU X,GAENSER H P,PIPPAN R. The effect of single overloads in tension and compression on the fatigue crack propagation behaviour of short cracks[J].International Journal of Fatigue,2016,89(8):77-86. [142] LINDROOS M,LAUKKANEN A,ANDERSSON T,et al. Micromechanical modeling of short crack nucleation and growth in high cycle fatigue of martensitic microstructures[J]. Computational Materials Science,2019,170:109185. [143] PROUDHON H,LI J,WANG F,et al. 3D simulation of short fatigue crack propagation by finite element crystal plasticity and remeshing[J]. International Journal of Fatigue,2015,82(1):238-246. [144] ZHANG L,ZHAO L G,ROY A,et al. In-situ SEM study of slip-controlled short-crack growth in single-crystal nickel superalloy[J]. Materials Science and Engineering,2019,742:564-572. [145] ZHANG P,ZHANG L,BAXEVANAKIS K P,et al.Modelling short crack propagation in a single crystal nickel-based superalloy using crystal plasticity and XFEM[J]. International Journal of Fatigue,2020,136:105594. [146] SUN Z,DE LOS RIOS E R,MILLER K J. Modelling small fatigue cracks interacting with grain boundaries[J].International Journal of Fatigue, 1991, 14(2-3):277-291. [147] SADANANDA K,BABU M N,ASURI V. A review of fatigue crack growth resistance in the short crack growth regime[J]. Materials Science and Engineering,2019,754:674-701. [148] POMMIER S, HAMAM R. Incremental model for fatigue crack growth based on a displacement partitioning hypothesis of mode I elastic-plastic displacement fields[J]. Fatigue&Fracture of Engineering Materials and Structures,2007,30(7):582-598. [149] POKLUDA J. Dislocation-based model of plasticity and roughness-induced crack closure[J]. International Journal of Fatigue,2013,46:35-40. [150] HIGASHIDA K,TANAKA M,HARTMAIER A,et al.Analyzing crack-tip dislocations and their shielding effect on fracture toughness[J]. Materials Science&Engineering A,2006,483:13-18. [151] DENG G J,TU S T,ZHANG X C,et al. Grain size effect on the small fatigue crack initiation and growth mechanisms of nickel-based superalloy GH4169[J].Engineering Fracture Mechanics,2015,134:433-450. [152] SIGNOR L,VILLECHAISE P,GHIDOSSI T,et al.Influence of local crystallographic configuration on microcrack initiation in fatigued 316LN stainless steel:Experiments and crystal plasticity finite elements simulations[J]. Materials Science&Engineering A,2016,649(1):239-249. [153] ALAM Z, EASTMAN D, WEBER G, et al.Microstructural aspects of fatigue crack initiation and short crack growth in René88DT[M]. State of New Jersey:John Wiley&Sons,Ltd,2016. [154] SABA M, CARL B. Role of microstructure heterogeneity on fatigue crack propagation of low-alloyed PM steels in the as-sintered condition[J].Metals-Open Access Metallurgy Journal,2017,7(2):60. [155] CHOWDHURY P,SEHITOGLU H. Mechanisms of fatigue crack growth-a critical digest of theoretical developments[J]. Fatigue&Fracture of Engineering Materials and Structures,2016,39(6):652-674. [156] WANG H X,ZHANG W F,SUN F Q,et al. A comparison study of machine learning based algorithms for fatigue crack growth calculation[J]. Materials,2017,10(5):543-543. [157] SHAMSIRBAND S, KHANSARI N M.Micromechanical damage diagnosis method based on machine learning and deep learning model[J]. Journal of Zhejiang University-Science A(Applied Physics&Engineering),2021,22(8):585-609. [158] MARTNEZ E R, CHAKRABORTY S,TESFAMARIAM S. Machine learning assisted stochastic-XFEM for stochastic crack propagation and reliability analysis[J]. Theoretical and Applied Fracture Mechanics,2021,112:102882. [159] BAO H Y X, WU S C, WU Z K, et al. A machine-learning fatigue life prediction approach of additively manufactured metals[J]. Engineering Fracture Mechanics,2020,242:107508. |
[1] | ZHANG Saifan, LI Bo, XUAN Fuzhen. Signal Denoising and Classification Prediction Method for On-line Monitoring of Acoustic Emission During Laser melting Process [J]. Journal of Mechanical Engineering, 2024, 60(6): 163-176. |
[2] | CHU Duanfeng, LIU Hongxiang, GAO Bolin, WANG Jinxiang, YIN Guodong. Survey of Predictive Cruise Control for Vehicle Platooning [J]. Journal of Mechanical Engineering, 2024, 60(18): 218-246. |
[3] | LIU Jianqin, HU Guisong, QIAO Jinli, GUO Xiao. Research on Real-time Performance Prediction of TBM Based on Dual Neural Networks [J]. Journal of Mechanical Engineering, 2024, 60(16): 43-53. |
[4] | HE Yunze, LI Xiang, WANG Hongjin, HOU Yuejun, ZHANG Fan, MU Xinying, LIU Hao, CHENG Hao, LI Shihua, LI Jie. A Review: Full-cycle Nondestructive Testing Based on Visible Light and Thermography of Wind Turbine Blade [J]. Journal of Mechanical Engineering, 2023, 59(6): 32-45. |
[5] | Siti Nor Azlina M. Ghazali, Muhamad Zahim Sujod, Mohd Shawal Jadin. A Multi-scale Smart Fault Diagnosis Model Based on Waveform Length and Autoregressive Analysis for PV System Maintenance Strategies* [J]. Chinese Journal of Electrical Engineering, 2023, 9(3): 99-110. |
[6] | HE Hongwen, WANG Haoyu, WANG Yong, LI Shuangqi. Lithium-ion Battery State of Health Estimation Based on Real-world Driving Data [J]. Journal of Mechanical Engineering, 2023, 59(22): 46-58. |
[7] | ZHANG Shuye, DUAN Xiaokang, LUO Keyu, XU Sunwu, ZHANG Zhihao, CHEN Jieshi, HE Peng. Current Status of Electronic Packaging Materials Using Machine Learning [J]. Journal of Mechanical Engineering, 2023, 59(22): 222-233. |
[8] | HUA Feng, WANG Yasen, JIN Junyang, YUAN Ye. A Multi-Lossless Linear Model Learning Method with Data Privacy-Preserving [J]. Journal of Mechanical Engineering, 2023, 59(12): 17-27. |
[9] | ZHOU Zihong, YOU Weitao, LU Yinyu, XI Yufan, WANG Kexing, WANG Guanyun, SUN Lingyun. Shape-changing Interface Design with the User-defined Form and Self-sensing Capability [J]. Journal of Mechanical Engineering, 2023, 59(11): 84-93. |
[10] | GUAN Yinxin, YANG Jixiang, DING Han. Data-driven Machine Tools Motion Control Error Modeling Method Using Control Signal as Intermediate Value [J]. Journal of Mechanical Engineering, 2022, 58(23): 178-187. |
[11] | ZHAN Mei, DONG Yunda, ZHAI Zhuolei, FAN Xiaoguang, SHI Zhipeng, AN Qiang. Review on Fast Numerical Simulation Method for Plastic Forming [J]. Journal of Mechanical Engineering, 2022, 58(16): 2-20. |
[12] | LIU Yuan, WEI Shizhong. Review on Data-driven Method for Property Prediction of Iron and Steel Wear-resistant Materials [J]. Journal of Mechanical Engineering, 2022, 58(10): 31-50. |
[13] | Weitao Wang, Jiwen Zhao, Yang Zhou. New Optimization Design Method for a Double Secondary Linear Motor Based on R-DNN Modeling Method and MCS Optimization Algorithm* [J]. Chinese Journal of Electrical Engineering, 2020, 6(3): 98-105. |
[14] | HU Xiaosong, CHEN Keping, TANG Xiaolin, WANG Bin. Machine Learning Velocity Prediction-based Energy Management of Parallel Hybrid Electric Vehicle [J]. Journal of Mechanical Engineering, 2020, 56(16): 181-192. |
[15] | SUN Bohua, DENG Weiwen, WU Jian, LI Yaxin. Mechanism Analysis of Driving Capability in the Virtual Random Vehicle-road Field [J]. Journal of Mechanical Engineering, 2020, 56(16): 166-180. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||