Journal of Mechanical Engineering ›› 2023, Vol. 59 ›› Issue (6): 32-45.doi: 10.3901/JME.2023.06.032
Previous Articles Next Articles
HE Yunze1, LI Xiang1, WANG Hongjin1, HOU Yuejun1, ZHANG Fan1, MU Xinying1, LIU Hao1, CHENG Hao1, LI Shihua2, LI Jie2
Received:
2022-05-06
Revised:
2022-12-15
Online:
2023-03-20
Published:
2023-06-03
CLC Number:
HE Yunze, LI Xiang, WANG Hongjin, HOU Yuejun, ZHANG Fan, MU Xinying, LIU Hao, CHENG Hao, LI Shihua, LI Jie. A Review: Full-cycle Nondestructive Testing Based on Visible Light and Thermography of Wind Turbine Blade[J]. Journal of Mechanical Engineering, 2023, 59(6): 32-45.
[1] United Nations Digital Library. Report of the conference of the parties to the united nations framework convention on climate change (21st Session,2015:Paris)[EB/OL].[2022-07-19]. https://digitallibrary.un.org/record/831052?ln=en [2] 国家能源局. 风电发展"十三五"规划[EB/OL].[2022-07-19]. http://www.gov.cn/xinwen/2016-11/30/content_5140637.htm. National Energy Administration. The 13th Five-Year Plan for wind power development[EB/OL].[2022-07-19]. http://www.gov.cn/xinwen/2016-11/30/content_5140637.htm. [3] 赵婉玉,彭莉莎. 我国非化石能源消费比重实现2030年目标的对策分析[J]. 劳动保障世界,2016(23):68. ZHAO Wanyu,PENG Lisha. Analysis of countermeasures for China's non-fossil energy consumption proportion to achieve the 2030 target[J]. Labor Security World,2016(23):68. [4] 国家能源局. 2017年全国电力工业统计数据[EB/OL].[2022-07-19]. http://www.nea.gov.cn/2018-01/22/c_136914154.htm. National Energy Administration. National Power Industry statistics in 2017[EB/OL].[2022-07-19]. http://www.nea.gov.cn/2018-01/22/c_136914154.htm. [5] 国家能源局. 可再生能源发电量1.7万亿千瓦时同比增1500亿千瓦时[EB/OL].[2022-07-19]. http://www.nea.gov.cn/2018-01/24/c_136920162.htm. National Energy Administration. Renewable energy generated 1.7 trillion kilowatt-hours of electricity,up 150 billion kilowatt-hours from a year earlier[EB/OL].[2022-07-19]. http://www.nea.gov.cn/2018-01/24/c_136920162.htm. [6] CAWLEY P. Structural health monitoring:Closing the gap between research and industrial deployment[J]. Structural Health Monitoring,2018,17(5):1225-1244. [7] LI Dongsheng,HO S C M,SONG Gangbing,et al. A review of damage detection methods for wind turbine blades[J]. Smart Materials and Structures,2015,24(3):033001. [8] LIU Wenyi,TANG Baoping,HAN Jiguang,et al. The structure healthy condition monitoring and fault diagnosis methods in wind turbines:A review[J]. Renewable and Sustainable Energy Reviews,2015,44:466-472. [9] TCHAKOUA P,WAMKEUE R,OUHROUCHE M,et al. Wind turbine condition monitoring:State-of-the-art review,new trends,and future challenges[J]. Energies,2014,7(4):2595-2630. [10] WYMORE M L,VAN DAM J E,CEYLAN H,et al. A survey of health monitoring systems for wind turbines[J]. Renewable and Sustainable Energy Reviews,2015,52:976-990. [11] Caithness Windfarm Information Forum. Summary of wind turbine accident data to 30 June 2020[EB/OL].[2022-07-19]. https://scotlandagainstspin.org/wp-content/uploads/2021/07/Turbine-Accident-Summary-to-30-June-2021-1.pdf. [12] YANG Ruizhen,HE Yunze,ZHANG Hong. Progress and trends in nondestructive testing and evaluation for wind turbine composite blade[J]. Renewable & Sustainable Energy Reviews,2016,60:1225-1250. [13] RIBRANT J,BERTLING L. Survey of failures in wind power systems with focus on Swedish wind power plants during 1997-2005[C]//Power Engineering Society General Meeting,2007,NewYork:IEEE,2007:1-8. [14] BEATTIE A,RUMSEY M. Non-destructive evaluation of wind turbine blades using an infrared Camera[C]//37th Aerospace Sciences Meeting and Exhibit,1999,Reno,Nevada:AIAA,1999:222-229. [15] CHADY T,SIKORA R,LOPATO P,et al. Wind turbine blades inspection techniques[J]. Przeglad Elektrotechniczny,2016,1(5):3-6. [16] DUTTON A G,BLANCH M,VIONIS P,et al. Acoustic emission monitoring from wind turbine blades undergoing static and fatigue testing[J]. Insight,2000,42(12):805-808. [17] JöNSSON M,RENDAHL B,ANNERGREN I. The use of infrared thermography in the corrosion science area[J]. Materials and Corrosion,2010,61(11):961-965. [18] OCHIENG F X,HANCOCK C M,ROBERTS G W,et al. A review of ground-based radar as a noncontact sensor for structural health monitoring of in-field wind turbines blades[J]. Wind Energy,2018,21(12):1435-1449. [19] PAN M,HE Yunze,TIAN Guiyun,et al. Defect characterisation using pulsed eddy current thermography under transmission mode and NDT applications[J]. NDT & E International,2012,52:28-36. [20] WORZEWSKI T,KRANKENHAGEN R,DOROSHTNASIR M,et al. Thermographic inspection of a wind turbine rotor blade segment utilizing natural conditions as excitation source,Part I:Solar excitation for detecting deep structures in GFRP[J]. Infrared Physics & Technology,2016,76:756-766. [21] YANG Ruizhen,HE Yunze. Optically and non-optically excited thermography for composites:A review[J]. Infrared Physics & Technology,2016,75:26-50. [22] ZHANG Hong,YANG Ruizhen,HE Yunze,et al. A review of microwave thermography nondestructive testing and evaluation[J]. Sensors,2017,17(5):1123. [23] ENERGY Adaptive. Speeding up wind turbine blade inspections[EB/OL].[2022-07-19]. adaptiveenergy.com/portfolio-item/turbine-blade-measurement/. [24] RAIŠUTIS R,JASIŪNIENĖ E,ŽUKAUSKAS E. Ultrasonic NDT of wind turbine blades using guided waves[J]. Ultragarsas/Ultrasound,2008,63(1):7-11. [25] YANG Bin,SUN Dongbai. Testing,inspecting and monitoring technologies for wind turbine blades:A survey[J]. Renewable and Sustainable Energy Reviews,2013,22:515-526. [26] RUMSEY M A,MUSIAL W. Application of infrared thermography nondestructive testing during wind turbine blade tests[J]. Journal of Solar Energy Engineering,2001,123(4):271-271. [27] SIKORA R,CHADY T,SZYMANIK B. Infrared thermographic testing of composite materials with adhesive joints[C]//Proceedings of the 18th World Conference on Nondestructive Testing,Durban,South Africa,2012:16-20. [28] CHADY T,LOPATO P,SZYMANIK B. Terahertz and thermal testing of glass-fiber reinforced composites with impact damages[J]. Journal of Sensors,2012,2012:468-481. [29] POOZESH P,BAQERSAD J,NIEZRECKI C,et al. Large-area photogrammetry based testing of wind turbine blades[J]. Mechanical Systems and Signal Processing,2017,86:98-115. [30] JOHNSON J T,HUGHES S,VAN DAM J. Stereo-Videogrammetry system for monitoring wind turbine blade surfaces during structural testing[J]. ASME Early Career Technical Journal,2009,8(1):1. [31] 岳大皓,李晓丽,张浩军,等. 风电叶片红外热波无损检测的试验探究[J]. 红外技术,2011,33(10):614-617. YUE Dahao,LI Xiaoli,ZHANG Haojun,et al. Experimental study on infrared thermal wave nondestructive testing of wind turbine blade[J]. Infrared Technology,2011,33(10):614-617. [32] HWANG S,AN Y-K,YANG J,et al. Remote inspection of internal delamination in wind turbine blades using continuous line laser scanning thermography[J]. International Journal of Precision Engineering and Manufacturing-Green Technology,2020,7(3):699-712. [33] MEINLSCHMIDT P,ADERHOLD J. Thermographic inspection of rotor blades[C]//European Federation for Non-Destructive Testing,2006,Berlin:DGZfP- Proceedings BB,2006:1-9. [34] 孟梨雨,曾智,王冠,等. 风电叶片蒙皮与腹板黏接红外热成像检测研究[J]. 光电子技术,2015,35(3):174-178. MENG Liyu,ZENG Zhi,WANG Guan,et al. Study on infrared thermal imaging detection of bonding of wind turbine blade skin to web[J]. Optoelectronic Technology,2015,35(3):174-178. [35] 杜金尧. 风力机叶片缺陷的红外热像检测技术研究[D]. 沈阳:沈阳工业大学,2020. DU Jinyao. Research on infrared thermal image detection technology of wind turbine blade defects[D]. Shenyang:Shenyang University of Technology,2020. [36] WANG Hongjin,WANG Nichen,HE Zhiyi,et al. Phase-locked restored pseudo heat flux thermography for detecting delamination inside carbon fiber reinforced composites[J]. IEEE Transactions on Industrial Informatics,2019,15(5):2938-2946. [37] WANG Hongjin,HSIEH Sheng-Jen,ZHOU Xunfei,et al. Restored pseudo heat flux (RPHF) algorithm for carbon fibre composite defect detection using thermography under uneven heating[J]. Quantitative InfraRed Thermography Journal,2018,15(2):145-159. [38] STERBLUE. Sterblue starts wind turbine inspections in China[EB/OL].[2022-07-19]. https://www.sterblue.com/blog-post/sterblue-starts-inspection-with-chinese-wind-turbine-partner-winward#:~:text=Sterblue%20mission%3A%20to%20inspect%2025%20wind%20turbines%20and,Samir%20from%20Sterblue%20travelled%20from%20France%20to%20China. [39] SKYSPECS. SkySpecs wind turbine inspection drone tech now operating in 19 countries[EB/OL].[2022-07-19]. https://skyspecs.com/skyspecs-wind-turbine-inspection-drone-tech-now-operating-in-19-countries/. [40] 扩博智能. 扩博智能:深耕于智能风电与智慧零售[EB/OL].[2022-07-19]. https://wind.in-en.com/html/wind-2414427.shtml. Clobotics. Clobotics:deeply ploughed in smart wind power and smart retail[EB/OL].[2022-07-19]. https://wind.in-en.com/html/wind-2414427.shtml. [41] 中能集团. 中能公司利用无人机监测风机叶片取得良效[EB/OL].[2022-07-19]. https://news.bjx.com.cn/html/20150831/658526.shtml. Jonoon. Jonoon uses uav to monitor fan blades to achieve good results[EB/OL].[2022-07-19]. https://news.bjx.com.cn/html/20150831/658526.shtml. [42] GALLEGUILLOS C,ZORRILLA A,JIMENEZ A,et al. Thermographic non-destructive inspection of wind turbine blades using unmanned aerial systems[J]. Plastics,Rubber and Composites,2015,44(3):98-103. [43] WORZEWSKI T,KRANKENHAGEN R,DOROSHTNASIR M. Thermographic inspection of wind turbine rotor blade segment utilizing natural conditions as excitation source,Part II:The effect of climatic conditions on thermographic inspections-A long term outdoor experiment[J]. Infrared Physics and Technology,2016,76:767-776. [44] CHATZAKOS P,AVDELIDIS N,HRISSAGIS K,et al. Autonomous infrared (IR) thermography based inspection of glass reinforced plastic (GRP) wind turbine blades (WTBs)[C]//IEEE Conferencce on Robotics,Automation and Mechatronics,NewYork:IEEE,2010:557-562. [45] DOROSHTNASIR M,WORZEWSKI T,KRANK- ENHAGEN R,et al. On-site inspection of potential defects in wind turbine rotor blades with thermography[J]. Wind Energy,2016,19(8):1407-1422. [46] 马宝琰,汤磊,赵晶,等. 风电叶片图像直线特征检测与拼接方法[J]. 哈尔滨理工大学学报,2020,25(5):83-92. MA Baoyan,TANG Lei,ZHAO Jun,et al. Detection and splicing method of linear feature of wind turbine blade image[J]. Journal of Harbin University of Science and Technology,2020,25(5):83-92. [47] LEBLANC B,NIEZRECKI C,AVITABILE P,et al. Topics in modal analysis II,Volume 6[M]. New York:Springer,2012. [48] USAMENTIAGA R,MOKHTARI Y,IBARRA- CASTANEDO C,et al. Automated dynamic inspection using active infrared thermography[J]. IEEE Transactions on Industrial Informatics,2018,14(12):5648-5657. [49] WEI Jiacheng,WANG Fei,LIU Junyan,et al. A laser arrays scan thermography (LAsST) for the rapid inspection of CFRP composite with subsurface defects[J]. Composite Structures,2019,226:111201. [50] KHODAYAR F,LOPEZ F,IBARRA-CASTANEDO Clemente,et al. Parameter optimization of robotize line scan thermography for CFRP composite inspection[J]. Journal of Nondestructive Evaluation,2018,37(1):5. [51] CHULKOV A O,NESTERUK D A,VAVILOV V P,et al. Optimizing input data for training an artificial neural network used for evaluating defect depth in infrared thermographic nondestructive testing[J]. Infrared Physics & Technology,2019,102:103047. [52] HE Zhiyi,WANG Hongjin,HE Yunze,et al. Joint scanning laser thermography defect detection method for carbon fiber reinforced polymer[J]. IEEE Sensors Journal,2019,20(1):328-336. [53] DENG Baoyuan,LI Xiang,WANG Hongjin,et al. Line scanning thermography reconstruction algorithm for defects inspection with novel velocity estimation and image registration[J]. IEEE Sensors Journal,2020,21(10):11555-11568. [54] LIONG S T,ZHENG D,HUANG Y C,et al. Leather defect classification and segmentation using deep learning architecture[J]. International Journal of Computer Integrated Manufacturing,2020,33(10-11):1105-1117. [55] TAO Xian,ZHANG Dapeng,MA Wenzhi,et al. Automatic metallic surface defect detection and recognition with convolutional neural networks[J]. Applied Sciences,2018,8(9):1575. [56] CAO Yanpeng,DONG Yafei,CAO Yanlong,et al. Two-stream convolutional neural network for non-destructive subsurface defect detection via similarity comparison of lock-in thermography signals[J]. NDT & E International,2020,112:102246. [57] HU Caiqi,DUAN Yuxia,LIU Shicai,et al. LSTM-RNN-based defect classification in honeycomb structures using infrared thermography[J]. Infrared Physics & Technology,2019,102:103032. [58] HU Jue,XU Weiping,GAO Bin,et al. Pattern deep region learning for crack detection in thermography diagnosis system[J]. Metals,2018,8(8):612. [59] LUO Qin,GAO Bin,WOO W L,et al. Temporal and spatial deep learning network for infrared thermal defect detection[J]. NDT & E International,2019,108:102164. [60] XIE Jing,XU Changhang,CHEN Guoming,et al. Improving visibility of rear surface cracks during inductive thermography of metal plates using Autoencoder[J]. Infrared Physics & Technology,2018,91:233-242. [61] HE Yunze,DENG Baoyuan,WANG Hongjin,et al. Infrared machine vision and infrared thermography with deep learning:A review[J]. Infrared Physics & Technology,2021,116:103754. [62] YANG Jun,WANG Wei,LIN Guang,et al. Infrared thermal imaging-based crack detection using deep learning[J]. IEEE Access,2019,7:182060-182077. [63] JANG K,KIM N,AN Y K. Deep learning-based autonomous concrete crack evaluation through hybrid image scanning[J]. Structural Health Monitoring,2019,18(5-6):1722-1737. [64] BANG H T,PARK S,JEON H. Defect identification of composites via thermography and deep learning techniques[J]. Composite Structures,2020,264:112405. [65] OLIVEIRA B,SEIBERT A A,BORGES V K,et al. Employing a U-net convolutional neural network for segmenting impact damages in optical lock-in thermography images of CFRP plates[J]. Nondestructive Testing And Evaluation,2020(12):1-19. [66] WEI Z,FERNANDES H C,HERRMANN H G,et al. A deep learning method for the impact damage segmentation of curve-shaped CFRP specimens inspected by infrared thermography[J]. Sensors,2021,21(2):395. [67] 邓堡元,何赟泽,王洪金,等. 光伏电池图像序列的深度学习检测方法[J]. 机械工程学报,2021,57(8):98-106. DENG Baoyuan,HE Yunze,WANG Hongjin,et al. Deep learning detection method for photovoltaic cell image sequence[J]. Journal of Mechanical Engineering,2021,57(8):98-106. [68] HU Nozhen,GAO Bin,WOO W L,et al. A lightweight spatial and temporal multi-feature fusion network for defect detection[J]. IEEE Transactions on Image Processing,2021,30:472-486. [69] SAEED N,KING N,SAID Z,et al. Automatic defects detection in CFRP thermograms,using convolutional neural networks and transfer learning[J]. Infrared Physics & Technology,2019,102:103048. |
[1] | ZHANG Saifan, LI Bo, XUAN Fuzhen. Signal Denoising and Classification Prediction Method for On-line Monitoring of Acoustic Emission During Laser melting Process [J]. Journal of Mechanical Engineering, 2024, 60(6): 163-176. |
[2] | LI Chunkai, WANG Jiaxin, SHI Yu, DAI Yue. Study on the Dynamic Behavior of GTAW Melt Pool Laser Streak and Penetration Prediction Method [J]. Journal of Mechanical Engineering, 2024, 60(6): 236-244. |
[3] | TANG Xinzi, LI Kexiang, HE Wenshuang, CHEN Rui, PENG Ruitao. Flutter Correlation Analysis and Aeroelastic Optimization of Wind Turbine Blades under Multi-conditions [J]. Journal of Mechanical Engineering, 2024, 60(20): 300-314. |
[4] | CHU Duanfeng, LIU Hongxiang, GAO Bolin, WANG Jinxiang, YIN Guodong. Survey of Predictive Cruise Control for Vehicle Platooning [J]. Journal of Mechanical Engineering, 2024, 60(18): 218-246. |
[5] | LIU Jianqin, HU Guisong, QIAO Jinli, GUO Xiao. Research on Real-time Performance Prediction of TBM Based on Dual Neural Networks [J]. Journal of Mechanical Engineering, 2024, 60(16): 43-53. |
[6] | ZHAO Dewang, JIANG Chao, ZHAO Yanguang, YANG Wenping, FAN Junling. Fatigue Performance Prediction Study of Al-Li Alloy-based on Experimental and “Shallow” + “Deep” Hybrid Neural Network Methods [J]. Journal of Mechanical Engineering, 2024, 60(16): 190-199. |
[7] | FU Ling, SHE Lingjuan, YAN Dulei, ZHANG Peng, LONG Xiangyun. Fatigue Damage Prediction Framework of The Boom System Based on Embedded Physical Information and Attention Mechanism BiLSTM Neural Network [J]. Journal of Mechanical Engineering, 2024, 60(13): 205-215. |
[8] | CHEN Qian, CHEN Kangkang, DONG Xingjian, HUANGFU Yifan, PENG Zhike, MENG Guang. Interpretable Convolutional Neural Network for Mechanical Equipment Fault Diagnosis [J]. Journal of Mechanical Engineering, 2024, 60(12): 65-76. |
[9] | LIU Yuekai, WANG Tianyang, CHU Fulei. Study on Fault Diagnostics and Knowledge Embedding of Complex Rotating Machinery Components Based on Low Delay Interpretable Deep Learning [J]. Journal of Mechanical Engineering, 2024, 60(12): 107-115. |
[10] | LAI Xuwei, DING Kun, ZHANG Kai, HUANG Fengfei, ZHENG Qing, LI Zhixuan, DING Guofu. Improved Interpretable-based Physically Guided Spatial Attention for Cross-process Parameters End Milling Cutter Wear Identification [J]. Journal of Mechanical Engineering, 2024, 60(12): 147-157. |
[11] | SHAO Haidong, XIAO Yiming, DENG Qianwang, REN Yingying, HAN Te. Trustworthy Mechanical Fault Diagnosis Using Uncertainty-aware Network [J]. Journal of Mechanical Engineering, 2024, 60(12): 194-206. |
[12] | LI Jiufa, ZOU Bowen, REN Yue. Research on Vehicle Trajectory Prediction Considering Vehicle-lane Interaction [J]. Journal of Mechanical Engineering, 2024, 60(10): 76-85. |
[13] | XU Siyuan, ZHANG Weidong, MAO Yuming, NIU Bin. Data-driven Design Optimization of Heterogeneous Cellular Structures for Realizing the Specified Deformation [J]. Journal of Mechanical Engineering, 2024, 60(1): 85-95. |
[14] | Siti Nor Azlina M. Ghazali, Muhamad Zahim Sujod, Mohd Shawal Jadin. A Multi-scale Smart Fault Diagnosis Model Based on Waveform Length and Autoregressive Analysis for PV System Maintenance Strategies* [J]. Chinese Journal of Electrical Engineering, 2023, 9(3): 99-110. |
[15] | HE Hongwen, WANG Haoyu, WANG Yong, LI Shuangqi. Lithium-ion Battery State of Health Estimation Based on Real-world Driving Data [J]. Journal of Mechanical Engineering, 2023, 59(22): 46-58. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||