Journal of Mechanical Engineering ›› 2025, Vol. 61 ›› Issue (8): 148-158.doi: 10.3901/JME.2025.08.148
WANG Gaojian1,2, YE Yanhong1, KANG Dandan3, DENG Dean1
Received:
2024-05-09
Revised:
2024-11-07
Published:
2025-05-10
CLC Number:
WANG Gaojian, YE Yanhong, KANG Dandan, DENG Dean. Effect of Heat Input on Microstructure, Mechanical Properties and Corrosion Behavior of Weathering Steel Weld Metal for High-speed Train Bogies[J]. Journal of Mechanical Engineering, 2025, 61(8): 148-158.
[1] 徐银光,李艳. 成渝中线400 km/h轮轨动车组技术指标研究[J]. 高速铁路技术,2020,11(3):7-11. XU Yinguang,LI Yan. Research on technical Indexes of 400 km/h wheel-rail EMU for Chengdu-Chongqing middle line [J]. High speed Railway Technology,2020,11(3):7-11. [2] 相阿峰,余卫龙,陈明慧. CRH380B型高寒动车组牵引电机防寒技术[J]. 机车电传动,2014(4):14-16,41. XIANG Afeng,YU Weilong,CHEN Minghui. Cold-proof technology on traction motor of high-cold CRH380B EMUs [J]. Electric Drive for Locomotives,2014(4):14-16,41. [3] 王伯铭. 高速动车组总体及转向架[M]. 2版. 成都:西南交大出版社,2014. WANG Boming. EMU overall and bogie[M]. 2nd ed. Chengdu:Southwest Jiaotong University Press,2014. [4] 田燕. 焊接区断口金相分析[M]. 北京:机械工业出版社,1991. TIAN Yan. Metallographic analysis of fracture in welding area[M]. Beijing:China Machine Press,1991. [5] BANG K,JUN H,PARK C. Effects of heat input and preheat/interpass temperature on strength and impact toughness of multipass welded low alloy steel weld metal[J]. Journal of Ocean Engineering and Technology,2015,29(6):481-487. [6] WANG Q,LI C,CHEN J,et al. Effects of heat input on microstructure and mechanical properties of Fe–2Cr–Mo–0.12C steel[J]. Materials Science and Technology,2018,34(5):538-546. [7] SUMARDIYANTO D,SUSILOWATI S E. Effect of welding parameters on mechanical properties of low carbon steel API 5L shielded metal arc welds[J]. American Journal of Materials Science,2019,9(1):15-21. [8] MOTOHASHI H,HAGIWARA N. Effect of heat input on mechanical properties and microstructure of gas metal arc and shielded metal arc girth weld metal of X80 line pipe[J]. Quarterly Journal of the Japan Welding Society,2006,24(3):223-232. [9] AMER A E,KOO M Y,LEE K H,et al. Effect of welding heat input on microstructure and mechanical properties of simulated HAZ in Cu containing microalloyed steel[J]. Journal of Materials Science,2010,45:1248-1254. [10] JORGE J C F,SOUZA L F G,REBELLO J M A. Effect of dilution,heat input and stress relieving on the microstructure/toughness relationship of C-Mn and low alloy steel weld metals[J]. Revue de la Soudure,1996,52(3):42-50. [11] EVANS G M. The effect of heat input on the microstructure and properties of C-Mn all-weld-metal deposits[J]. Welding Journal,1982,61(4):125. [12] XU Bin,MA Chengyong,LI Li,et al. Effect of heat input on microstructure and property of weld joints of a 1200 MPa grade HSLA steel[J]. Chinese Journal of Materials Research,2017,31(2):129-135. [13] 陈玉喜,刘亮,张华军,等. 焊接热输入对低合金高强钢焊缝组织和韧性的影响[J]. 上海交通大学学报,2015,49(3):306-309,314. CHEN Yuxi,LIU Liang,ZHANG Huajun,et al. Effect of heat input on microstructure and toughness of weld joint of high-strength low-alloy steel[J]. Journal of Shanghai Jiao Tong University,2015,49(3):306-309,314. [14] PIRINEN M,MARTIKAINEN Y,LAYUS P D,et al. Effect of heat input on the mechanical properties of welded joints in high-strength steels[J]. Welding International,2016,30(2):129-132. [15] SURYANA S,PRAMONO A. The influence of heat input to mechanical properties and microstructures of API 5L-X65 steel using submerged arc welding process[C]//MATEC Web of Conferences. EDP Science,2019. [16] 严铿,叶逢雨,刘炜. 焊接热输入对F550Z钢焊接接头低温韧性的影响[J]. 焊接学报,2014,35(3):93-96,117-118. YAN Keng,YE Fengyu,LIU Wei. Effect of welding heat input on low temperature toughness of welded joints of F550Z steel [J]. Transactions of the China Welding Institution,2014,35(3):93-96,117-118. [17] AMBADE S P,SHARMA A,PATIL A P,et al. Effect of welding processes and heat input on corrosion behaviour of Ferritic stainless steel 409M[J]. Materials Today:Proceedings,2021,41:1018-1023. [18] QIN H,TANG Y,LIANG P. Effect of heat input on microstructure and corrosion behavior of high strength low alloy steel welds[J]. International Journal of Electrochemical Science,2021,16(4):210449. [19] LU Y,JING H,HAN Y,et al. Effect of welding heat input on the corrosion resistance of carbon steel weld metal[J]. Journal of Materials Engineering and Performance,2016,25:565-576. [20] KANG B Y,KIM H J,HWANG S K. Effect of Mn and Ni on the variation of the microstructure and mechanical properties of low-carbon weld metals[J]. Transactions of the Iron & Steel Institute of Japan,2000,40(12):1237-1245. [21] KANG Y,PARK G,JEONG S,et al. Correlation between microstructure and low-temperature impact toughness of simulated reheated zones in the multi-pass weld metal of high-strength steel[J]. Metallurgical and Materials Transactions A,2018,49(1):177-186. [22] 曹楚南. 电化学阻抗谱导论[M]. 北京:科学出版社,2002. CAO Chunan. Introduction to electrochemical impedance spectroscopy[M]. Beijing:Science Press,2002. [23] 张侠洲,高立军,姚仲成,等. 合金元素对耐候熔敷金属力学及耐蚀性能的影响[J]. 焊接学报,2019,40(5):154-160,168. ZHANG Xiazhou,GAO Lijun,YAO Zhongcheng,et al. Effect of alloy element on mechanical and corrosion resistance properties of weathering steel deposited metal [J]. Transactions of the China Welding Institution,2019,40(5):154-160,168. [24] GRONG O. Metallurgical modelling of welding [M]. London:The Institute of Materials,1994. [25] GRONG O,CHRISTENSEN N. Factors controlling MIG weld metal chemistry [J]. Scand. J. Metall.,1983,12(4):155-165. [26] BLOCK-BOLTEN A,EAGAR T W. Metal vaporization from weld pools [J]. Metallurgical Transactions B,1984,15:461-469. [27] TATSUMI K,TANAKA K,KOMEN H,et al. Identification of dominant factors determining droplet temperature in gas metal arc welding [J]. Welding International,2022,36(8):489-499. [28] KHAN P A A,DEBROY T. Alloying element vaporization and weld pool temperature during laser welding of AlSl 202 stainless steel[J]. Metallurgical Transactions B,1984,15:641-644. [29] ST-LAURENT S,L'ESPÉRANCE G. Effects of chemistry,density and size distribution of inclusions on the nucleation of acicular ferrite of C-Mn steel shielded-metal-arc-welding weldments [J]. Materials Science and Engineering:A,1992,149(2):203-216. [30] ZHANG Z,FARRAR R A. Role of non-metallic inclusions in formation of acicular ferrite in low alloy weld metals [J]. Materials Science and Technology,1996,12(3):237-260. [31] KOSEKI T,THEWLIS G. Overview Inclusion assisted microstructure control in C–Mn and low alloy steel welds[J]. Materials Science and Technology,2005,21(8):867-879. [32] SEO J S,KIM H J,LEE C. Effect of Ti addition on weld microstructure and inclusion characteristics of bainitic GMA welds[J]. ISIJ International,2013,53(5):880-886. [33] HONG T,DEBROY T,BABU S S,et al. Modeling of inclusion growth and dissolution in the weld pool[J]. Metallurgical and Materials Transactions B,2000,31:161-169. [34] LEI H,NAKAJIMA K,HE J C. Mathematical model for nucleation,Ostwald ripening and growth of inclusion in molten steel[J]. ISIJ International,2010,50(12):1735-1745. [35] RAMIREZ J E. Characterization of high-strength steel weld metals:chemical composition,microstructure,and nonmetallic inclusions [J]. Welding Journal,2008,87(3):65-s-75-s. [36] YAMADA T,TERASAKI H,KOMIZO Y I . Lattice misfit between inclusion and acicular ferrite in weld metal of low carbon low alloy steel[J]. Quarterly Journal of the Japan Welding Society,2009,27(2):114s-117s. [37] BABU S S,DAVID S A,DEBROY T. Coarsening of oxide inclusions in low alloy steel welds[J]. Science and Technology of Welding and Joining,1996,1(1):17-27. [38] BABU S S,DAVID S A,VITEK J M,et al. Development of macro-and microstructures of carbon–manganese low alloy steel welds:inclusion formation[J]. Materials Science and Technology,1995,11(2):186-199. [39] LAN L,KONG X,QIU C,et al. Influence of microstructural aspects on impact toughness of multi-pass submerged arc welded HSLA steel joints[J]. Materials & Design,2016,90:488-498. [40] LAN L Y,QIU C L,ZHAO D W,et al. Effect of single pass welding heat input on microstructure and hardness of submerged arc welded high strength low carbon bainitic steel[J]. Science and Technology of Welding and Joining,2012,17(7):564-570. [41] LEE T K,HJ K. Effect of inclusion size on the nucleation of acicular ferrite in welds[J]. ISIJ International,2000,40(12):1260-1268. [42] Liu S. The role of nonmetallic inclusions in controlling weld metal microstructures in niobium microalloyed steels[D]. Golden,Colo:Colorado School of Mines,1984. [43] MU W,JÖNSSON P G,NAKAJIMA K. Effect of sulfur content on inclusion and microstructure characteristics in steels with Ti2O3 and TiO2 additions[J]. ISIJ International,2014,54(12):2907-2916. [44] MQ J,GM E,GR E. The influence of titanium additions and interpass temperature on the microstructures and mechanical properties of high strength SMA weld metals[J]. ISIJ International,1995,35(10):1222-1231. [45] Rykalin N N. Calculation of heat processes in welding[R]. Office for Official Publications of the European Communities,1960. [46] BABU S S. The mechanism of acicular ferrite in weld deposits[J]. Current Opinion in Solid State And Materials Science,2004,8(3-4):267-278. [47] MATSUDA F,IKEUCHI K,OKADA H,et al. Effect of MA constituent on fracture behavior of 780 and 980MPa class HSLA steels subjected to weld HAZ thermal cycles (Materials,Metallurgy &Weldability)[J]. Transactions of JWRI,1994,23(2):231-238. [48] JORGE J C F,DE SOUZA L F G,MENDES M C,et al. Microstructure characterization and its relationship with impact toughness of C–Mn and high strength low alloy steel weld metals–a review[J]. Journal of Materials Research and Technology,2021,10:471-501. [49] AVAZKONANDEH G M H,HADDAD S M,HAERIAN A. Effect of chromium content on the microstructure and mechanical properties of multipass MMA,low alloy steel weld metal[J]. Journal of Materials Science,2009,44(1):186-197. [50] LI X,MA X,SUBRAMANIAN S V,et al. Influence of prior austenite grain size on martensite–austenite constituent and toughness in the heat affected zone of 700 MPa high strength linepipe steel[J]. Materials Science and Engineering:A,2014,616:141-147. [51] JORGE J C F,SOUZA L F G,REBELLO J M A. The effect of chromium on the microstructure/toughness relationship of C–Mn weld metal deposits[J]. Materials Characterization,2001,47(3-4):195-205. [52] PRATOMO S B,OKTADINATA H,WIDODO T W. Effect of nickel additions on microstructure evolution and mechanical properties of low-alloy Cr-Mo cast steel[C]//IOP Conference Series:Materials Science and Engineering. IOP Publishing,2019,541(1):012050. [53] 朱相荣. 金属材料的海洋腐蚀与防护[M]. 北京:国防工业出版社,1999. ZHU Xiangrong. Marine corrosion and protection of metal materials [M]. Beijing:National Defense Industry Press,1999. [54] ZHANG S,LIU J,TANG M,et al. Role of rare earth elements on the improvement of corrosion resistance of micro-alloyed steels in 3.5 wt.% NaCl solution[J]. Journal of Materials Research and Technology,2021,11:519-534. [55] MATSUDA F,IKEUCHI K,FUKADA Y,et al. Review of mechanical and metallurgical investigations of MA constituent in welded joint in Japan[J]. Transactions of JWRI,1995,24(1):1-24. [56] MAKHDOOM M A,KAMRAN M,AWAN G H,et al. Effect of multipasses on microstructure and electrochemical behavior of weldments[J]. Metallurgical and Materials Transactions A,2013,44(12):5505-5512. [57] LIAN X,ZHU J,WANG R,et al. Effects of rare earth (Ce and La) on steel corrosion behaviors under wet-dry cycle immersion conditions[J]. Metals,2020,10(9):1174. [58] ISHIKAWA T,MINAMIGAWA M,KANDORI K,et al. Influence of metal ions on the transformation of γ-FeOOH into α-FeOOH [J]. Journal of the Electrochemical Society,2004,151(9):B512. |
[1] | LIU Yuanming, LIU Yanxiao, SHEN Hongzhuo, WANG Zhenhua, WANG Tao. Deformation Characteristic and Microstructure Evolution of Mg/Al Clad Plate in Corrugated Rolling [J]. Journal of Mechanical Engineering, 2025, 61(8): 85-97. |
[2] | ZHANG Shuyue, WANG Wenjian, LIN Qiang, GUO Jun, LIU Qiyue, Maksym Spriyagin, Qing Wu. Effect of Surface Defect Spacing and Alignment on Rail Rolling Contact Fatigue Damage [J]. Journal of Mechanical Engineering, 2025, 61(6): 194-205. |
[3] | DU Xinwei, WEI Yanhong, SHEN Yonghua, ZHAO Wenyong, LIU Renpei. Development Status of Wire Arc Additive Manufacturing Equipment System and Application [J]. Journal of Mechanical Engineering, 2025, 61(6): 92-102. |
[4] | HAN Jing, SHI Yu, LI Guang, ZHANG Hang, LU Gang. Study on the Microstructure and Mechanical Properties of Copper/Steel Joints Welded by Non-uniform Laser Source [J]. Journal of Mechanical Engineering, 2025, 61(6): 151-159. |
[5] | HU Zhili, LU Junjie, WEI Pengfei, HUA Lin. Investigation of the Deformation Characteristics and Mechanical Properties of Al-Zn-Mg-Cu Alloy Subjected to Pre-aged Hardening Forming [J]. Journal of Mechanical Engineering, 2025, 61(6): 160-173. |
[6] | MENG Qingyu, MENG Bianbian, GUO Bing, GUO Zhenfei, WU Guicheng, LI Chuanqu, ZHAO Qingliang. Precision Grinding Technology of Micro-tooth Internal Thread with Large Aspect Ratio Based on Microstructured Tools [J]. Journal of Mechanical Engineering, 2025, 61(5): 330-342. |
[7] | MI Gaoyang, JIANG Yiming, WANG Chunming, ZHANG Mingyang, HU Yiyang, XIAO Yongkang, ZHAI Chuncheng, OUYANG Qiubao. Forming, Microstructure and Mechanical Properties of 7075 Al Joint Prepared Via Laser Beam Oscillating Welding [J]. Journal of Mechanical Engineering, 2025, 61(4): 86-95. |
[8] | LI Yongquan, HAO Qingrui, LIANG Guodong, WANG Cunxi, GAO Yang. Microstructure and High Temperature Oxidation Properties of Al-Y Co-deposition Coating on TiAl Alloy [J]. Journal of Mechanical Engineering, 2025, 61(4): 137-146. |
[9] | ZENG Daoping, ZHENG Shaoxian, AN Tongbang, ZUO Yue, MA Chengyong. Effect of Heat Input on Microstructure and Properties of SAW Joints of Q440qENH Weathering Steel [J]. Journal of Mechanical Engineering, 2025, 61(4): 147-155. |
[10] | TANG Heng, XIE Yansong, SUN Yalong, WU Chunxia, TANG Yong. Research Progress on Design and Fabrication of Unidirectional Liquid Self-driven Transport Structure [J]. Journal of Mechanical Engineering, 2025, 61(3): 376-391. |
[11] | SHEN Zhikang, LI Dongxiao, SUN Zhonggang, MA Liangchao, LIU Xiaochao, TIAN Yanhong, GUO Wei, HOU Wentao, PIAO Zhongyu, YANG Xinqi, LI Wenya. Fundamentals and Prospects of Additive Friction Stir Deposition:Opportunities and Challenges [J]. Journal of Mechanical Engineering, 2025, 61(2): 56-85. |
[12] | ZHANG Mingjun, LI Chenxi, ZOU Jianglin, CHENG Bo, ZHANG Jian, TONG Yonggang, HU Yongle, CHEN Genyu. Experimental Research on Laser Welding of AZ31B Magnesium Alloy Using Power-modulated Ring-mode Fiber Laser [J]. Journal of Mechanical Engineering, 2025, 61(2): 151-161. |
[13] | YANG Chunpan, WANG Xiaowei, LI Xuesong, YANG Dongqing, HUANG Yong, PENG Yong, WANG Kehong. Study on Microstructure and Properties of 18Ni-350 Maraging Steel by Wire and Arc Addictive Manufacturing with Ultrasonic Impact Treatment [J]. Journal of Mechanical Engineering, 2025, 61(2): 162-171. |
[14] | WU Guanzhi, CHEN Nannan, SHI Huabing, LIU Kunshan, KONG Liang, WANG Min. Influence of Welding Parameters on Formation and Mechanical Properties of Lap Fillet Welded Carbon Steel Joints in Oscillation Laser Welding with Filler Wire [J]. Journal of Mechanical Engineering, 2025, 61(2): 172-180. |
[15] | ZHENG Lijuan, SUN Yong, XU Xiangqian, YU Juman, WANG Jun, WANG Chengyong. Laser Micromachining of Heterogeneous Multi-layer Composite Materials:A Review [J]. Journal of Mechanical Engineering, 2025, 61(1): 305-325. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||