Journal of Mechanical Engineering ›› 2025, Vol. 61 ›› Issue (17): 1-14.doi: 10.3901/JME.2025.17.001
HUANG Wenqing1,2, LIU Yanwei1,2, LI Jiangchao1,2, LI Pengyang1,2, LI Shujuan1,2
Received:2024-12-09
Revised:2025-06-10
Published:2025-10-24
CLC Number:
HUANG Wenqing, LIU Yanwei, LI Jiangchao, LI Pengyang, LI Shujuan. Research Progress on Control Mechanism and Control Algorithm of Micro High-mobility Coaxial UAV[J]. Journal of Mechanical Engineering, 2025, 61(17): 1-14.
| [1] RAKHA T, GORODETSKY A. Review of unmanned aerial system (UAS) applications in the built environment: Towards automated building inspection procedures using drones[J]. Automation in Construction, 2018, 93: 252-264. [2] RESTAS A. Drone applications for supporting disaster management[J]. World Journal of Engineering and Technology, 2015, 3(3): 316-321. [3] MISHRA B, GARG D, NARANG P, et al. Drone-surveillance for search and rescue in natural disaster[J]. Computers and Communications, 2020, 156(2): 1-10. [4] SEO J, DUQUE L, WACKER J. Drone-enabled bridge inspection methodology and application[J]. Automation in Construction, 2018, 94(3): 112-126. [5] GRIP H F, LAM J S, BAYARD D S, et al. Flight control system for NASA's mars helicopter[C]//AIAA Scitech 2019 Forum, January 7-11, 2019, San Diego, CA, USA. Reston, Virginia: AIAA, 2019: 1289. [6] GRIP H F, SCHARF D P, MALPICA C A, et al. Guidance and control for a mars helicopter[C]//2018 AIAA Guidance, Navigation, and Control Conference. January 8-12, 2018, Kissimmee, Florida, USA. Reston, Virginia: AIAA, 2018: 1946. [7] GRIP H F, JOHNSON W, MALPICA C A, et al. Flight dynamics of a mars helicopter[C]//Journal of Guidance Control Dynamics, Sep. 12-15, 2017. Reston, Virginia: AIAA, 2017: 836-849. [8] 胡林强. 共轴高速直升机动力系统及其旋翼操纵系统研究[D]. 长春: 吉林大学, 2016. HU Linqiang. Research on the power system and rotor control system of coaxial high-speed helicopter[D]. Changchun: Jilin University, 2016. [9] 朱凯杰. 共轴双旋翼式火星飞行器主旋翼系统设计与试验研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. ZHU Kaijie. Design and experimental research of the main rotor system of the coaxial two-rotor Mars aircraft[D]. Harbin: Harbin Institute of Technology, 2021. [10] 袁夏明, 朱纪洪, 陈志刚, 等. 一种共轴式直升机操纵机构的运动学建模与分析[J]. 航空学报, 2013, 34(5): 988-1000. YUAN Xiaming, ZHU Jihong, CHEN Zhigang, et al. Kinematic modeling and analysis of a coaxial helicopter control mechanism[J]. Acta Aeronautica Sinica, 2013, 34(5): 988-1000. [11] 王涛. 小型共轴双旋翼无人机的设计及研究[D]. 北京: 北京交通大学, 2019. WANG Tao. Design and research of small coaxial two-rotor unmanned aerial vehicle[D]. Beijing: Beijing Jiaotong University, 2019. [12] 郭希娟, 蒙小刚, 王玉镇, 等. 一种新型共轴式直升机操纵机构运动学分析[J]. 机械工程学报, 2016, 52(1): 47-56. GUO Xijuan, MENG Xiaogang, WANG Yuzhen, et al. Kinematic analysis of a new type of coaxial helicopter control mechanism[J]. Journal of Mechanical Engineering, 2016, 52(1): 47-56. [13] 马双. 一种共轴混联机构运动学性能指标分析与仿真[D]. 秦皇岛: 燕山大学, 2015. MA Shuang. Analysis and simulation of kinematic performance index of a coaxial hybrid mechanism[D]. Qinhuangdao: Yanshan University, 2015. [14] 王学雷, 刘峰, 杜雄, 等. 直升机自动倾斜器等效并联机构自由度分析[J]. 机械设计与制造, 2014(1): 59-61. WANG Xuelei, LIU Feng, DU Xiong, et al. Degree of freedom analysis of the equivalent parallel mechanism of helicopter swashplate[J]. Machinery Design & Manufacture, 2014(1): 59-61. [15] 吕艺轩. 共轴双旋翼式火星飞行器转向系统设计与试验研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. LÜ Yixuan. Design and experimental research of the steering system of the coaxial two-rotor Mars aircraft[D]. Harbin: Harbin Institute of Technology, 2021. [16] FANKHAUSER P, BOUABDALLAH S, LEUTENEGGER S, et al. Modeling and decoupling control of the coax micro helicopter[C]//2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, Sept. 25-30, 2011, San Francisco, CA, USA. Piscataway, NJ: IEEE, 2011: 2223-2228. [17] BERMES C, LEUTENEGGER S, BOUABDALLAH S, et al. New design of the steering mechanism for a mini coaxial helicopter[C]//2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Sept 22-26, 2008, Nice, France. Piscataway, NJ: IEEE, 2008: 1236-1241. [18] BERMES C, SARTORI K, SCHARFROTH D, et al. Control of a coaxial helicopter with center of gravity steering[C]//Workshop Proceedings of SIMPAR 2008, Modeling, and Programming for Autonomous Robots, November 3-6, 2008, Venice, Italy. Berlin: Springer Verlag, 2008: 492-500. [19] YADAV P K, KALIARAJAN K. Dynamic model of a MAV with COG shifting mechanism[J]. IFAC Proceedings Volumes, 2014, 47(3): 380-385. [20] DENTON H, BENEDICT M, KANG H. Design, development, and flight testing of a tube-launched coaxial-rotor based micro air vehicle[J]. International Journal of Micro Air Vehicles, 2022, 14(1): 1-12. [21] 周洋. 两栖变质心共轴无人机带载荷动力学建模与控制研究[D]. 西安: 西安工业大学, 2023. ZHOU Yang. Dynamics modeling and control research of amphibious variable center of mass coaxial UAV with load[D]. Xi'an: Xi'an Technological University, 2023. [22] CHEN L, XIAO J, ZHENG Y, et al. Design, modeling, and control of a coaxial drone[J]. IEEE Transactions on Robotics, 2024, 40(4): 1650-1663. [23] 黄祥斌. 微小型无人旋翼飞行器的研究与设计[D]. 北京: 北京理工大学, 2016. HUANG Xiangbin. Research and design of micro and small unmanned rotorcraft[D]. Beijing: Beijing Institute of Technology, 2016. [24] DOMINGUEZ V H, REYES-OSORIO L A, OLLERVIDES-VAZQUEZ J, et al. Design and manufacture of a micro unmanned aerial vehicle[J]. Journal of Aerospace Engineering, 2023, 37(1): 1-9. [25] DOMINGUEZ V H, GARCIA-SALAZAR O, AMEZQUITA-BROOKS L A, et al. Micro coaxial drone: Flight dynamics, Simulation and Ground Testing[J]. Aerospace, 2022, 9(5): 245. [26] CHENG Z, PEI H. Flight transition control for ducted fan uav with saturation on control surfaces[C]//2021 International Conference on Unmanned Aircraft Systems, June 15-18, 2021, Athens, Greece. Piscataway, NJ: IEEE, 2021: 439-446. [27] PAN N, JIN R, XU C, et al. Canfly: A can-sized autonomous mini coaxial helicopter[C]//2023 IEEE/RSJ International Conference on Intelligent Robots and Systems Oct 1-5, 2023, Detroit, MI, USA. Piscataway, NJ: IEEE, 2023: 4989-4996. [28] PAULOS J, YIM M. An underactuated propeller for attitude control in micro air vehicles[C]//2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nov 3-7, 2013, Tokyo, Japan. Piscataway, NJ: IEEE, 2013: 1374-1379. [29] PAULOS J, YIM M. Flight performance of a swashplateless micro air vehicle[C]//2015 IEEE International Conference on Robotics and Automation, May 26-30, 2015, Seattle, WA, USA. Piscataway, NJ: IEEE, 2015: 5284-5289. [30] PAULOS J. Rotorcraft blade pitch control through torque modulation[J]. IEEE Transactions on Robotics, 2017, 33(1): 47-65. [31] PAULOS J, YIM M. Cyclic blade pitch control for small UAV without a swashplate[C]//AIAA Atmospheric Flight Mechanics Conference, January 9-13, 2017, Grapevine, Texas. Reston, Virginia: AIAA, 2018: 689-700. [32] PAULOS J, YIM M. Scalability of cyclic control without blade pitch actuators[C]//AIAA SciTech Forum, January 8-12, 2018, Kissimmee, Florida. Reston, Virginia: AIAA, 2018: 0532. [33] PAULOS J, CARAMER B, YIM M. Emulating a fully actuated aerial vehicle using two actuators[C]//2018 IEEE International Conference on Robotics and Automation, May 21-25, 2018, Brisbane, QLD, Australia. Piscataway, NJ: IEEE, 2018: 7011-7016. [34] 尹欣繁. 无斜盘微型无人直升机设计与飞行控制研究[D]. 长沙: 国防科技大学, 2017. YIN Xinfan. Design and flight control research of slant-free micro unmanned helicopter[D]. Changsha: National University of Defense Technology, 2017. [35] BOUABDALLAH S. System forming a two degrees of freedom actuator, for example for varying the pitch angle of the blades of a propeller during rotation: US, 188211730[P]. 2020-09-23. [36] 吴奇. 无斜盘单旋翼系统电磁调姿方法与试验研究[D]. 哈尔滨: 哈尔滨工业大学, 2022. WU Qi. Research on electromagnetic attitude adjustment method and experiment of slant-free single-rotor system[D]. Harbin: Harbin Institute of Technology, 2022. [37] BOUABDALLAH S, SIEGWART R, CAPRARI G. Design and control of an indoor coaxial helicopter[C]//2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Oct. 9-15, 2006, Beijing. Piscataway, NJ: IEEE, 2006: 2930-2935. [38] 张梓嵩. 共轴双旋翼无人机飞行动力学仿真与控制算法研究[D]. 沈阳: 沈阳理工大学, 2021. ZHANG Zisong. Research on flight dynamics simulation and control algorithm of coaxial two-rotor unmanned aerial vehicle[D]. Shenyang: Shenyang Ligong University, 2021. [39] LI S, WANG Y, TAN J, et al. Adaptive RBFNNs/integral sliding mode control for a quadrotor aircraft[J]. Neurocomputing, 2016, 216: 126-134. [40] RIOS H, FALCON R, GONZALEZ O A, et al. Continuous sliding-mode control strategies for quadrotor robust tracking: Real-time application[J]. IEEE Transactions on Industrial Electronics, 2019, 66(2): 1264-1272. [41] XIONG J J, ZHANG G B. Global fast dynamic terminal sliding mode control for a quadrotor uav[J]. ISA Transactions, 2017, 66: 233-240. [42] JIA Z, YU J, MEI Y. Integral backstepping sliding mode control for quadrotor helicopter under external uncertain disturbances[J]. Aerospace Science and Technology, 2017, 68: 299-307. [43] LABBADI M, CHERKAOUI M. Robust adaptive backstepping fast terminal sliding mode controller for uncertain quadrotor UAV[J]. Aerospace Science and Technology, 2019, 93: 1053-30. [44] 程维刚. 共轴倾转旋翼无人机动力学建模与控制器设计[D]. 大连: 大连理工大学, 2022. CHENG Weigang. Dynamics modeling and controller design of coaxial tiltrotor unmanned aerial vehicle[D]. Dalian: Dalian University of Technology, 2022. [45] VANDERSCHAFT A. L2-gain analysis of nonlinear-systems and nonlinear state feedback-h-infinity control[J]. IEEE Transactions on Automatic Control, 1992, 37(6): 770-784. [46] HUANG Y, JIA Y. Nonlinear robust h-infinity control for spacecraft body-fixed hovering around noncooperative target via modified theta -d method[J]. IEEE Transactions on Aerospace and Electronic, 2019, 55(5): 2451-2463. [47] RAFFO G V. Robust nonlinear control for path tracking of a quad-rotor helicopter[J]. Asian Journal of Control, 2015, 17(1): 142-156. [48] NOORMOHAMMADI-ASL A, ESRAFILIAN O, AHANGAR A M, et al. System identification and h-infinity-based control of quadrotor attitude[J]. Mechanical Systems and Signal Processing, 2020, 135: 1062-1131. [49] GULSHAN Z, ALI M, SHAH M, et al. A robust control design approach for altitude control and trajectory tracking of a quadrotor[J]. Electrical Engineering & Electromechanics, 2021, 5: 17-23. [50] ORTIZ J, MINCHALA L, REINOSO M. Nonlinear robust h-infinity PID controller for the multivariable system quadrotor[J]. IEEE Latin America Transactions, 2016, 14(3): 1176-1183. [51] SCHARFROTH D, BERMES S, BOUABDALLAH S, et al. Modeling, system identification and robust control of a coaxial micro helicopter[J]. Control Engineering Practice, 2010, 18(7): 700-711. [52] 宋梦洋. 小型折叠共轴旋翼无人机总体设计与仿真研究[D]. 南京: 南京航空航天大学, 2022. SONG Mengyang. Overall design and simulation research of small folding coaxial rotor unmanned aerial vehicle[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2022. [53] 吴东旭. 共轴双旋翼飞行器姿态控制研究[D]. 沈阳: 沈阳理工大学, 2020. WU Dongxu. Research on attitude control of coaxial two-rotor aircraft[D]. Shenyang: Shenyang Ligong University, 2020. [54] XU Y, LIU Z. Research on flight control method of micro co-axial rotor UAV based on reinforcement learning[C]//Proceedings of 2022 International Conference on Autonomous Unmanned Systems, Sep 24-25, 2022, Xi'an, China. Singapore: Springer Nature Singapore, 2023: 1308-1320. [55] 有德义, 郝永平. 共轴无人机扩展卡尔曼姿态控制研 究[J]. 装备机械, 2023, 46(3): 22-27. YOU Deyi, HAO Yongping. Research on extended kalman attitude control of coaxial UAV[J]. Equipment Machinery, 2023, 46(3): 22-27. [56] 汪首坤, 许永康, 陈志华, 等. 无人机移动自主回收着陆原理及控制方法[J]. 机械工程学报, 2024, 60(3): 34-46. WANG Shoukun, XU Yongkang, CHEN Zhihua, et al. Principle and control method of mobile autonomous recovery and landing for unmanned aerial vehicle[J]. Chinese Journal of Mechanical Engineering, 2024, 60(3): 34-46. [57] MENGOZZI S, ZANATT F, BARCHI, et al. Towards nano-Drones agile flight using deep reinforcement learning[C]//2024 IEEE International Conference on Omni-layer Intelligent Systems (COINS), July 29-31, 2024, London, United Kingdom. Piscataway, NJ: IEEE, 2024: 1-6. [58] 戴佳佳, 龚小溪, 汪俊. 面向飞机外表面检测任务的无人机覆盖路径规划方法[J]. 机械工程学报, 2023, 59(16): 243-253. DAI Jiajia, GONG Xiaoxi, WANG Jun. UAV coverage path planning method for aircraft outer surface inspection tasks[J]. Journal of Mechanical Engineering, 2023, 59(16): 243-253. [59] YANG S, XI L, HAO J, et al. Aerodynamic-parameter identification and attitude control of quad-rotor model with CIFER and adaptive LADRC[J]. Chinese Journal of Mechanical Engineering, 2021, 34(02): 160-169. [60] 肖遥, 冯岩. 碳纤维复合材料一体化成型及其在无人机领域的应用[J]. 现代工程科技, 2023, 2(7): 66-69. XIAO Yao, FENG Yan. Integrated molding of carbon fiber composite materials and its application in the field of UAVs[J]. Modern Engineering Science and Technology, 2023, 2(7): 66-69. [61] SEKIGUCHI A, SUNDARAM R. Lightweight and highly conductive carbon nanotube-copper composites[J]. Journal of Materials Science, 2021, 90(1): 40-44. [62] 张丽娇. 航空航天高强铝合金材料应用及发展趋势研究[J]. 新材料产业, 2021 (3): 7-11. ZHANG Lijiao. Research on the application and development trend of high-strength aluminum alloy materials in aerospace[J]. New Materials Industry, 2021(3): 7-11. [63] 段海滨. 2019年无人机热点回眸[J]. 科技导报, 2020, 38 (1): 170-187. DUAN Haibin. Review of UAV hotspots in 2019[J]. Science & Technology Review, 2020, 38 (1): 170-187. [64] 褚威, 李欣, 牛思源, 等. 3D打印技术在无人机生产制造中的应用[J]. 电子技术与软件工程, 2020, 12(2): 142-144. CHU Wei, LI Xin, NIU Siyuan, et al. Application of 3D printing technology in UAV production and manufacturing[J]. Electronic Technology & Software Engineering, 2020, 12(2): 142-144. [65] 熊婷, 钱波, 胡珍涛, 等. 基于连续纤维增材制造工艺的四旋翼无人机拓扑优化[J]. 工程塑料应用, 2023, 51(10): 76-84. XIONG Ting, QIAN Bo, HU Zhentao, et al. Topology optimization of quadrotor UAV based on continuous fiber additive manufacturing process[J]. Engineering Plastics Application, 2023, 51(10): 76-84. [66] MA Y, TAN J, WANG D, et al. Light-weight design method for force-performance-structure of complex structural part based co-operative optimization[J]. Chinese Journal of Mechanical Engineering, 2018, 31(2): 115-123. [67] 龚静, 冯笛恩, 夏林. 微型无人机发展现状及未来趋 势[J]. 飞行力学, 2023, 41(5): 12-22. GONG Jing, FENG Dien, XIA Lin. Development status and future trends of micro UAVs[J]. Flight Dynamics, 2023, 41 (5): 12-22. [68] 段海滨, 申燕凯, 赵彦杰, 等. 2020年无人机热点回 眸[J]. 科技导报, 2021, 39 (1): 233-247. DUAN Haibin, SHEN Yankai, ZHAO Yanjie, et al. Review of UAV hotspots in 2020[J]. Science & Technology Review, 2021, 39(1): 233-247. [69] 吕卉, 于海生, 孙昕. 模块化设计在无人机设计中的应用探析[J]. 科技风, 2021, 13: 5-6. LÜ Hui, YU Haisheng, SUN Xin. Analysis on the application of modular design in UAV design[J]. Technology Wind, 2021, 13: 5-6. [70] BUZZATTO J, MENDES P H, PERERA N, et al. The new dexterity omnirotor platform: Design, modeling, and control of a modular, versatile, all-terrain vehicle[C]//2021 IEEE/RSJ International Conference on Intelligent Robots and Systems, Sep. 27-Oct. 1, 2021, Prague, Czech Republic. Piscataway, NJ: IEEE, 2021: 6336-6343. [71] 刘刚田, 张家颐, 李林林, 等. 国内外智能农用无人机模块化关键技术研究[J]. 河北农机, 2023(16): 9-11. LIU Gangtian, ZHANG Jiayi, LI Linlin, et al. Research on key modular technologies of intelligent agricultural UAVs at home and abroad[J]. Hebei Agricultural Machinery, 2023(16): 9-11. [72] KRISHNAN P S. Trends in uav platforms and technologies[J]. Journal of Aerospace Sciences and Technologies, 2023, 61(1): 22-31. |
| [1] | ZHONG Qi, XU Enguang, JIA Tiwei, WANG Junxian, YANG Huayong, LI Yanbiao. Research Status and Prospect on the Control Method of High Speed on/off Valve [J]. Journal of Mechanical Engineering, 2025, 61(4): 290-301. |
| [2] | YANG Zhaojun, HE Jialong, LIU Zhifeng, LI Guofa, CHEN Chuanhai. Recent Progress in Reliability Technology of CNC Machine Tools [J]. Journal of Mechanical Engineering, 2023, 59(19): 152-163. |
| [3] | LIU Wei, LIU Shun, DENG Zhaohui, GE Jimin. Research Progress on Positioning Error Compensation Technology of Industrial Robot [J]. Journal of Mechanical Engineering, 2023, 59(17): 1-16. |
| [4] | TANG Xin, OUYANG Quan, HUANG Lang-hui, WANG Zhi-sheng, MA Rui. Fast Charging Control for Lithium-ion Batteries Based on Deep Reinforcement Learning [J]. Journal of Mechanical Engineering, 2022, 58(22): 69-78. |
| [5] | Veramalla Rajagopal, Danthurthi Sharath, Gundeboina Vishwas, Jampana Bangarraju, Sabha Raj Arya, Challa Venkatesh. Optimized Controller Gains Using Grey Wolf Algorithm for Grid Tied Solar Power Generation with Improved Dynamics and Power Quality [J]. Chinese Journal of Electrical Engineering, 2022, 8(2): 75-85. |
| [6] | NIE Xiangfan, LI Yinghong, HE Weifeng, LUO Sihai, ZHOU Liucheng. Research Progress and Prospect of Laser Shock Peening Technology in Aero-engine Components [J]. Journal of Mechanical Engineering, 2021, 57(16): 293-305. |
| [7] | Kodakkal Amritha, Veramalla Rajagopal, Kuthuri Narasimha Raju, Sabha Raj Arya. Ant Lion Algorithm for Optimized Controller Gains for Power Quality Enrichment of Off-grid Wind Power Harnessing Units [J]. Chinese Journal of Electrical Engineering, 2020, 6(3): 85-97. |
| [8] | WU Chuansong, MENG Xiangmeng, CHEN Ji, QIN Guoliang. Progress in Numerical Simulation of Thermal Processes and Weld Pool Behaviors in Fusion Welding [J]. Journal of Mechanical Engineering, 2018, 54(2): 1-15. |
| [9] | LI Ruiqin, WANG Ying, WANG Mingya, ZHAO Yaohong, SONG Jie. Research Progress and Development Trend of Hybrid-driven Mechanism [J]. Journal of Mechanical Engineering, 2016, 52(13): 1-9. |
| [10] | FAN Wengang, YE Peiqing. Research Progress in Tool Path Planning for Five-axis End Milling Machining of Sculptured Surfaces [J]. Journal of Mechanical Engineering, 2015, 51(15): 168-182. |
| [11] | LIU Guijie;WANG Meng;HE Bo. Cooperative Simulation Based on Adams and Matlab/Simulink for Autonomous Underwater Vehicle [J]. , 2009, 45(10): 22-29. |
| [12] | ZHANG Kexun;LI Jin;ZHOU Ming;LI Jianqiu YANG Fuyuan;OUYANG Minggao. APPLICATON AREA OF RANK ONE CONTROL ALGORITHM TO DIESEL ENGINE AIR SYSTEM [J]. , 2007, 43(12): 127-132. |
| [13] | WEN Shizhu. PROGRESS OF RESEARCH ON NANOTRIBOLOGY [J]. , 2007, 43(10): 7-8. |
| [14] | Song Weigang;Liu Hongyi;Wang Ying. RESEARCH ON DYNAMIC AND COMPUTER SIMULASION OF THE BELT CONVEYOR [J]. , 2003, 39(9): 133-138. |
| [15] | Qin Datong. HISTORY AND PROGRESS OF SCIENCE AND TECHNOLOGY ON MECHANICAL TRANSMISSION [J]. , 2003, 39(12): 37-43. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
