Journal of Mechanical Engineering ›› 2023, Vol. 59 ›› Issue (17): 1-16.doi: 10.3901/JME.2023.17.001
Previous Articles Next Articles
LIU Wei1,2, LIU Shun1,2, DENG Zhaohui1,2, GE Jimin1,2
Received:
2022-09-28
Revised:
2023-04-24
Online:
2023-09-05
Published:
2023-11-16
CLC Number:
LIU Wei, LIU Shun, DENG Zhaohui, GE Jimin. Research Progress on Positioning Error Compensation Technology of Industrial Robot[J]. Journal of Mechanical Engineering, 2023, 59(17): 1-16.
[1] 高峰,郭为忠. 中国机器人的发展战略思考[J]. 机械工程学报,2016,52(7):1-5. GAO Feng,GUO Weizhong. Thinking of the development strategy of robots in China[J]. Journal of Mechanical Engineering,2016,52(7):1-5. [2] 晁永生,刘海江. 白车身焊接机器人加工路径优化和仿真[J]. 中国机械工程,2010,21(4):442-445. CHAO Yongsheng,LIU Haijiang. Welding robot path optimization and simulation for body in white[J]. China Mechanical Engineering,2010,21(4):442-445. [3] IGLESIAS I,SEBASTIÁN M A,ARES J E. Overview of the state of robotic machining:current situation and future potential[J]. Procedia Engineering,2015,132:911-917. [4] MICHALOS G,KOUSI N,KARAGIANNIS P,et al. Seamless human robot collaborative assembly-an automotive case study[J]. Mechatronics,2018,55:194-211. [5] ZHU Z,TANG X,CHEN C,et al. High precision and efficiency robotic milling of complex parts:Challenges,approaches and trends[J]. Chinese Journal of Aeronautics,2021,35(2):22-46 [6] CVITANIC T, NGUYEN V, MELKOTE S N. Pose optimization in robotic machining using static and dynamic stiffness models[J]. Robotics and Computer-Integrated Manufacturing,2020,66(4):101992. [7] 关立文,陈志雄,刘春,等. 钻铆机器人静刚度建模及优化[J]. 清华大学学报(自然科学版),2021,61(9):965-971. GUAN Liwen,CHEN Zhixiong,LIU Chun,et al. Static stiffness modeling for optimizing drilling and riveting robots[J]. Journal of Tsinghua University (Science and Technology),2021,61(9):965-971. [8] BU Y,LIAO W,TIAN W,et al. Stiffness analysis and optimization in robotic drilling application[J]. Precision Engineering,2017,49:388-400. [9] CHEN X,ZHANG Q,SUN Y. Non-kinematic calibration of industrial robots using a rigid-flexible coupling error model and a full pose measurement method[J]. Robotics and Computer-Integrated Manufacturing,2019,57:46-58. [10] 尹仕斌. 工业机器人定位误差分级补偿与精度维护方法研究[D]. 天津:天津大学,2015. YIN Shibin. Research on the graded calibration and accuracy maintenance technique for industrial robot[D]. Tianjin:Tianjin University,2015. [11] XIONG G,DING Y,ZHU L. Stiffness-based pose optimization of an industrial robot for five-axis milling[J]. Robotics and Computer-Integrated Manufacturing,2019,55:19-28. [12] WU Y,KLIMCHIK A,CARO S,et al. Geometric calibration of industrial robots using enhanced partial pose measurements and design of experiments[J]. Robotics and Computer-Integrated Manufacturing,2015,35:151-168. [13] 吴锦辉,陶友瑞. 工业机器人定位精度可靠性研究现状综述[J]. 中国机械工程,2020,546(18):2180-2188. WU Jinhui,TAO Yourui. Review on research status of positioning accuracy reliability of industrial robot[J]. China Mechanical Engineering,2020,546(18):2180-2188. [14] 董慧颖,李文广. 一种基于平面精度的机器人标定方法及仿真[J]. 中国机械工程,2011,329(17):2039-2042. DONG Huiying,LI Wenguang. Robot calibration based on planar precision[J]. China Mechanical Engineering,2011,329(17):2039-2042. [15] 陈宵燕. 工业机器人多模式标定及刚柔耦合误差补偿方法研究[D]. 无锡:江南大学,2020. CHEN Xiaoyan. Research on multi-mode calibration and rigid-flexible coupling error compensation method for industrial robot[D]. Wuxi:Jiangnan University,2020. [16] 史晓佳,张福民,曲兴华,等. KUKA工业机器人位姿测量与在线误差补偿[J]. 机械工程学报,2017,53(8):1-7. SHI Xiaojia,ZHANG Fumin,QU Xinghua,et al. Position and attitude measurement and online errors compensation for KUKA industrial robots[J]. Journal of Mechanical Engineering,2017,53(8):1-7. [17] NUBIOLA A,BONEV I A. Absolute calibration of an ABB IRB 1600 robot using a laser tracker[J]. Robotics and Computer-Integrated Manufacturing,2013,29(1):236-245. [18] XU X,ZHU D,ZHANG H Y,et al. TCP-based calibration in robot-assisted belt grinding of aero-engine blades using scanner measurements[J]. The International Journal of Advanced Manufacturing Technology,2016,90:635-647. [19] 唐宇存,李锦忠,林安迪,等. 基于三坐标测量机的机器人位姿精度检测方法[J]. 计算机工程与应用,2020,56(5):257-262. TANG Yucun,LI Jinzhong,LIN Andi,et al. Method for measuring robot pose accuracy based on coordinate measuring machine[J]. Computer Engineering and Applications,2020,56(5):257-262. [20] SELVA G L,MOTTA J. Theoretical and practical aspects of robot calibration with experimental verification[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2011,33(1):15-21. [21] GAN Y,DUAN J,DAI X. A calibration method of robot kinematic parameters by drawstring displacement sensor[J]. International Journal of Advanced Robotic Systems,2019,16(5):1-9. [22] ZHONG X L,LEWIS J M. A new method for autonomous robot calibration[C]//Proceedings of 1995 IEEE International Conference on Robotics and Automation. Nagoya, Aichi,Japan:IEEE,1995:1790-1795. [23] BESNARD S,KHALIL W,GARCIA G. Advances in robot kinematics[M]. Netherlands:Springer,2000. [24] JOUBAIR A,BONEV I A. Non-kinematic calibration of a six-axis serial robot using planar constraints[J]. Precision Engineering,2015,40:325-333. [25] MEGGIOLARO M A,SCRIFFIGNANO G,DUBOWSKY S. Manipulator calibration using a single endpoint contact constraint[C]//American Society of Mechanical Engineers. Proceedings of the 26th Biennial Mechanisms And Robotics Conference. New York:ASME,2000:759-767. [26] 谷乐丰,杨桂林,方灶军,等. 一种新型机器人自标定装置及其算法[J]. 机器人,2020,42(1):100-109. GU Lefeng,YANG Guilin,FANG Zaojun,et al. The calibration algorithms for industrial robots based on a novel self-calibration device[J]. Robot,2020,42(1):100-109. [27] 陆艺,于丽梅,郭斌. 基于封闭尺寸链的工业机器人结构参数标定[J]. 仪器仪表学报,2018,39(2):38-46. LU Yi,YU Limei,GUO Bin. Calibration of industrial robot structure parameters based on closed dimensional chain[J]. Chinese Journal of Scientific Instrument,2018,39(2):38-46. [28] HAYAT A A,BOBY R A,SAHA S K. A geometric approach for kinematic identification of an industrial robot using a monocular camera[J]. Robotics and Computer-Integrated Manufacturing,2019,57:329-346. [29] 邾继贵,张楠楠,任永杰,等. 基于双目立体视觉的工业机器人在线温度补偿[J]. 光学精密工程,2018,26(9):2139-2149. ZHU Jigui,ZHANG Nannan,REN Yongjie,et al. In-line thermal compensation of industrial robots based on binocular stereo vision[J]. Optics and Precision Engineering,2018,26(9):2139-2149. [30] 解则晓,辛少辉,李绪勇,等. 基于单目视觉的机器人标定方法[J]. 机械工程学报,2011,47(5):35-39. XIE Zexiao,XIN Shaohui,LI Xuyong,et al. Method of robot calibration based on monocular vision[J]. Journal of Mechanical Engineering,2011,47(5):35-39. [31] KUO Y,LIU B,WU C. Pose determination of a robot manipulator based on monocular vision[J]. IEEE Access,2016,4:8454-8464. [32] WANG R,WU A,CHEN X,et al. A point and distance constraint based 6R robot calibration method through machine vision[J]. Robotics and Computer-Integrated Manufacturing,2020,65:101959-101965. [33] JIANG T,CUI H,CHENG X. A calibration strategy for vision-guided robot assembly system of large cabin[J]. Measurement,2020,163(1):107991- 108000. [34] ŠVACO M,ŠEKORANJA B,ŠULIGOJ F,et al. Calibration of an industrial robot using a stereo vision system[J]. Procedia Engineering,2014,69:459-463. [35] ZHANG X,SONG Y,YANG Y,et al. Stereo vision based autonomous robot calibration[J]. Robotics and Autonomous Systems,2017,93:43-51. [36] KLAUS S,STEPHEN L A,MICHAEL G. Complete,minimal and model-continuous kinematic models for robot calibration[J]. Robotics and Computer Integrated Manufacturing,1997,13(1):73-85. [37] DENAVIT J,HARTENBERG R S. A kinematic notation for lower-pair mechanisms[J]. Trans. of the Asme.journal of Applied Mechanics,1955,22:215-221. [38] GAO G,SUN G,JKIANG N,et al. Structural parameter identification for 6 DOF industrial robots[J]. Mechanical Systems and Signal Processing,2018,113:145-155. [39] 周煦武. 六自由度串联机器人静态位姿误差及其补偿研究[D]. 杭州:浙江理工大学,2019. ZHOU Xuwu. Research on static pose error and compensation of six degrees of freedom serial robot[D]. Hangzhou:Zhejiang Sci-Tech University,2019. [40] 郭瑞峰,彭光宇,杨柳,等. 基于MD-H模型的新型混联码垛机器人运动学分析与仿真[J]. 机械传动,2017,41(2):122-127. GUO Ruifeng,PENG Guangyu,YANG Liu,et al. Kinematics analysis and simulation of a new type of hybrid palletizing robot based on MD-H model[J]. Journal of Mechanical Transmission,2017,41(2):122-127. [41] XIE Z,ZONG P,YAO P,et al. Calibration of 6-DOF industrial robots based on line structured light[J]. Optik,2019,183:1166-1178. [42] LI Z,LI S,LUO X. An overview of calibration technology of industrial robots[J]. IEEE/CAA Journal of Automatica Sinica,2021,8(1):23-36. [43] STONE H,SANDERSON A. A prototype arm signature identification system[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Raleigh. Raleigh,NC,USA. 1987:175-182. [44] KAZEROUNIAN K,QIAN G Z. Kinematic calibration of robotic manipulators[J]. Journal of Mechanical Design,1989,111(4):482-487. [45] 赵艺兵,温秀兰,康传帅,等. 零参考模型用于工业机器人定位精度提升研究[J]. 仪器仪表学报,2020,41(5):76-84. ZHAO Yibing,WEN Xiulan,KANG Chuanshuai,et al. Research on improvement of industry robot positioning accuracy based on ZRM[J]. Chinese Journal of Scientific Instrument,2020,41(5):76-84. [46] ZHUANG H,ROTH Z S,HAMANO F. A complete and parametrically continuous kinematic model for robot manipulators[J]. IEEE Transactions on Robotics and Automation,2002,8(4):451-463. [47] 张旭,郑泽龙,齐勇. 6自由度串联机器人D-H模型参数辨识及标定[J]. 机器人,2016,38(3):360-370. ZHANG Xu,ZHENG Zelong,QI Yong. Parameter identification and calibration of D-H model for 6-DOF serial robots[J]. Robot,2016,38(3):360-370. [48] 高文斌,王洪光,姜勇. 一种基于指数积的串联机器人标定方法[J]. 机器人,2013,35(2):156-161. GAO Wenbin,WANG Hongguang,JIANG Yong. A calibration method for serial robots based on POE formula[J]. Robot,2013,35(2):156-161. [49] 刘冠隆,贺晓莹,高兴宇,等. 七自由度双臂机器人旋量理论正向运动学与工作空间分析[J]. 机械科学与技术,2019,38(5):704-712. LIU Guanlong,HE Xiaoying,GAO Xingyu,et al. Forward kinematics and workspace analysis of screw theory of seven-DOF dual-arm robot[J]. Mechanical Science and Technology for Aerospace Engineering,2019,38(5):704-712. [50] URREA C,PASCAL J. Design,simulation,comparison and evaluation of parameter identification methods for an industrial robot[J]. Computers and Electrical Engineering,2018,67:791-806. [51] 张恩政,唐宁敏,陈刚,等. 基于改进IGG3权函数距离误差模型的工业机器人标定[J]. 中国机械工程,2021,565(13):1539-1546. ZHANG Enzheng,TANG Ningmin,CHEN Gang,et al. Industrial robot calibration based on improved IGG3 weight function of distance error model[J]. China Mechanical Engineering,2021,565(13):1539-1546. [52] ZHU Q,XIE X,CHAO L,et al. Kinematic self-calibration method for dual-manipulators based on optical axis constraint[J]. IEEE Access,2018,7:7768-7782. [53] 陈宵燕,张秋菊,孙沂琳. 串联机器人多模式标定与刚柔耦合误差补偿方法研究[J]. 农业机械学报,2019,50(3):396-403. CHEN Xiaoyan,ZHANG Qiuju,SUN Yilin. Multi-mode calibration and rigid-flexible coupling error compensation method of serial robot[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(3):396-403. [54] LUO G,ZOU L,WANG Z,et al. A novel kinematic parameters calibration method for industrial robot based on Levenberg-Marquardt and differential evolution hybrid algorithm[J]. Robotics and Computer-Integrated Manufacturing,2021,71(1):102165-102175. [55] OMODEI A,LEGNANI G,ADAMINI R. Three methodologies for the calibration of industrial manipulators:Experimental results on a SCARA robot[J]. Journal of Robotic Systems,2000,17(6):291-307 [56] JIANG Z,ZHOU W,LI H,et al. A new kind of accurate calibration method for robotic kinematic parameters based on the extended Kalman and particle filter algorithm[J]. IEEE Transactions on Industrial Electronics,2018,65(4):3337-3345. [57] 刘宇,李瑰贤,夏丹,等. 基于改进遗传算法辨识空间机器人动力学参数[J]. 哈尔滨工业大学学报,2010,42(11):1734-1739. LIU Yu,LI Guixian,XIA Dan,et al. Identifying dynamic parameters of a space robot based on improved genetic algorithm[J]. Journal of Harbin Institute of Technology,2010,42(11):1734-1739. [58] WEST C,MONTAZERI A,MONK S D,et al. A genetic algorithm approach for parameter optimization of a 7-DOF robotic manipulator[J]. Ifac Papersonline,2016,49(12):1261-1266. [59] ALICI G,JAGIELSKI R,SEKERCIOGLU A,et al. Prediction of geometric errors of robot manipulators with particle swarm optimization method[J]. Robotics & Autonomous Systems,2006,54(12):956-966. [60] 刘飞. 工业机器人运动学参数辨识及误差补偿研究[D].昆明:昆明理工大学,2018. LIU Fei. Kinematics parameter identification and compensation of an industrial robot[D]. Kunming:Kunming University of Science and Technology,2018. [61] ZENG Y,TIAN W,LI D,et al. An error-similarity-based robot positional accuracy improvement method for a robotic drilling and riveting system[J]. The International Journal of Advanced Manufacturing Technology,2017,88(9-12):2745-2755. [62] 王龙飞,李旭,张丽艳,等. 工业机器人定位误差规律分析及基于ELM算法的精度补偿研究[J]. 机器人,2018,40(6):843-851. WANG Longfei,LI Xu,ZHANG Liyan,et al. Analysis of the positioning error of industrial robots and accuracy compensation based on ELM algorithm[J]. Robot,2018,40(6):843-851. [63] BAI Y. On the comparison of model-based and modeless robotic calibration based on a fuzzy interpolation method[J]. The International Journal of Advanced Manufacturing Technology,2006,31(11-12):1243-1250. [64] 张湧涛,宋志伟,王一,等. 基于空间网格的机器人工作点位姿标定方法[J]. 浙江大学学报,2016,50(10):1980-1986. ZHANG Yongtao,SONG Zhiwei,WANG Yi,et al. Robot position and rotation calibration method based on spatial mesh[J]. Journal of Zhejiang University,2016,50(10):1980-1986. [65] ALICI G,SHIRINZADEH B. A systematic technique to estimate positioning errors for robot accuracy improvement using laser interferometry based sensing[J]. Mechanism and Machine Theory,2005,40(8):879-906. [66] 周炜,廖文和,田威,等. 面向飞机自动化装配的机器人空间网格精度补偿方法研究[J]. 中国机械工程,2012,23(19):2306-2311. ZHOU Wei,LIAO Wenhe,TIAN Wei,et al. Robot accuracy compensation method of spatial grid for aircraft automatic assembly[J]. China Mechanical Engineering,2012,23(19):2306-2311. [67] ZHU W,QU W,CAO L,et al. An off-line programming system for robotic drilling in aerospace manufacturing[J]. The International Journal of Advanced Manufacturing Technology,2013,68(9-12):2535-2545. [68] 孙剑萍,XI J,汤兆平. 近似度加权平均插值的机器人精度补偿方法研究[J]. 仪器仪表学报,2019,40(11):128-137. SUN Jianping,XI J,TANG Zhaoping. Study on robot accuracy compensation method based on approximation degree weighted average interpolation[J]. Chinese Journal of Scientific Instrument,2019,40(11):128-137. [69] WU H,TIZZANO W,ANDERSEN T T,et al. Hand-eye calibration and inverse kinematics of robot arm using neural network[J]. Advances in Intelligent Systems & Computing,2014,274:581-591. [70] NGUYEN H N,ZHOU J,KANG H J. A calibration method for enhancing robot accuracy through integration of an extended Kalman filter algorithm and an artificial neural network[J]. Neurocomputing,2015,151:996-1005. [71] WANG X,TANG Z,TAMURA H,et al. An improved backpropagation algorithm to avoid the local minima problem[J]. Neurocomputing,2004,56:455-460. [72] 周炜,廖文和,田威,等. 基于粒子群优化神经网络的机器人精度补偿方法研究[J]. 中国机械工程,2013,24(2):174-179. ZHOU Wei,LIAO Wenhe,TIAN Wei,et al. Method of industrial robot accuracy compensation method based on particle swarm optimization neural network[J]. China Mechanical Engineering,2013,24(2):174-179. [73] 周旭,鲁墨武,姜春英,等. 改进的PSO-BP算法在工业机器人末端位姿误差补偿中的应用[J]. 信息与控制,2021,50(4):505-512. ZHOU Xu,LU Mowu,JIANG Chunying,et al. Application of improved PSO-BP algorithm in the compensation of end-pose error of industrial robot[J]. Information and Control,2021,50(4):505-512. [74] LE P N,KANG H J. Robot manipulator calibration using a model based identification technique and a neural network with the teaching learning-based optimization[J]. IEEE Access,2020,8:105447-105454. [75] WANG W,TIAN W,LIAO W,et al. Error compensation of industrial robot based on deep belief network and error similarity[J]. Robotics and Computer-Integrated Manufacturing,2022,73(8):102220-102230. [76] 齐飞,平雪良,刘洁,等. 工业机器人误差补偿及冗余参数研究[J]. 机械设计,2017,34(2):17-22. QI Fei,PING Xueliang,LIU Jie,et al. Error compensation and parameters redundancy research of industrial robot[J]. Journal of Machine Design,2017,34(2):17-22. [77] 韩哈斯额尔敦,曾志革,刘海涛,等. 光学加工机器人定位误差测量与分析[J]. 光电工程,2017,44(5):516-522. HASIRDEN,ZENG Zhige,LIU Haitao,et al. Measurement and analyses on positioning accuracy for optical processing robots[J]. Opto-Electronic Engineering,2017,44(5):516-522. [78] 李祥云,向民志,范百兴,等. 工业机器人运动学参数标定精度分析与改进[J]. 测绘科学技术学报,2018,35(3):255-259. LI Xiangyun,XIANG Minzhi,FAN Baixing,et al. Precision analysis and improvement of kinematic parameters calibration for industrial robots[J]. Journal of Geomatics Science and Technology,2018,35(3):255-259. [79] DéPINCé P,HASCOëT J Y. Active integration of tool deflection effects in end milling. Part 2. Compensation of tool deflection[J]. International Journal of Machine Tools and Manufacture,2006,46(9):945-956. [80] 齐俊德,张定华,李山,等. 工业机器人绝对定位误差的建模与补偿[J]. 华南理工大学学报,2016,44(11):113-118. QI Junde,ZHANG Dinghua,LI Shan,et al. Modeling and compensation of absolute positioning error of industrial robots[J]. Journal of South China University of Technology,2016,44(11):113-118. [81] WU G,WANG D,DONG H. Off-Line programmed error compensation of an industrial robot in ship hull welding[C]//International Conference on Intelligent Robotics and Applications. Springer,Cham,2017:135-146. [82] 王龙飞. 飞机结构机器人自动制孔的误差补偿技术[D]. 南京:南京航空航天大学,2019. WANG Longfei. Research on error compensation of industrial robots used for automatic drilling on aircraft structures[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2019. [83] 陈杰. 串联机器人的误差分析及补偿方法研究[D]. 大连:大连理工大学,2020. CHEN Jie. Research on error analysis and compensation methods of serial robot[D]. Dalian:Dalian University of Technology,2020. [84] LIU B,ZHANG F,QU X. A method for improving the pose accuracy of a robot manipulator based on multi-sensor combined measurement and data fusion[J]. Sensors,2015,15(4):7933-7952. [85] 张振邦,曲兴华,张福民. PID参数对机器人在线力补偿的影响[J]. 电子测量与仪器学报,2018,32(3):142-148. ZHANG Zhenbang,QU Xinghua,ZHANG Fumin. Effect of PID parameter on online force compensation of robot[J]. Journal of Electronic Measurement and Instrumentation,2018,32(3):142-148. [86] DENKENA B,LEPPER T. Enabling an industrial robot for metal cutting operations[J]. Procedia CIRP,2015,35:79-84. [87] CVITANIC T,NGUYEN V,MELKOTE S N. Pose optimization in robotic machining using static and dynamic stiffness models[J]. Robotics and Computer-Integrated Manufacturing,2020,66:101992-102008. [88] PAN Z,ZHANG H. Improving robotic machining accuracy by real-time compensation[C]//ICROS-SICE International Joint Conference 2009 International Joint Conference,Fukuoka,2009:4289-4294. [89] 魏得权. 基于静刚度模型的机器人铣削加工误差在线补偿[D]. 武汉:华中科技大学,2019. WEI Dequan. On-line compensation of machining errors in robot milling based on static stiffness model[D]. Wuhan:Huazhong University of Science and Technology,2019. [90] CEN L,MELKOTE S N,CASTLE J,et al. A wireless force-sensing and model-based approach for enhancement of machining accuracy in robotic milling[J]. IEEE/ASME Transactions on Mechatronics,2016,21(5):2227-2235. [91] POSADA J,SCHNEIDER U,PIDAN S,et al. High accurate robotic drilling with external sensor and compliance model-based compensation[C]//International Conference on Robotics and Automation,May16-21,2016. Piscataway,NJ:IEEE,2016:3901-3907. [92] MOELLER C,SCHMIDT H C,KOCH P,et al. Real time pose control of an industrial robotic system for machining of large scale components in aerospace industry using laser tracker system[J]. SAE International Journal of Aerospace,2017,10(2):100-108. [93] WANG Z,ZHANG R,KEOGH P. Real-Time laser tracker compensation of robotic drilling and machining[J]. Journal of Manufacturing and Materials Processing,2020,4(3):79-104. [94] MOSQUEIRA G,APETZ J,SANTOS K M,et al. Analysis of the indoor GPS system as feedback for the robotic alignment of fuselages using laser radar measurements as comparison[J]. Robotics and Computer-Integrated Manufacturing,2012,28(6):700-709. [95] PORATH M D C,BORTONI L A F,SIMONI R,et al. Offline and online strategies to improve pose accuracy of a stewart platform using indoor-GPS[J]. Precision Engineering,2020,63:83-93. [96] STORM C,SCHöNBERG A,SCHMITT R H. Model predictive control approach for assembling large components in motion[J]. Production Engineering,2017,11(2):167-173. [97] 张华,夏菠. 基于双目视觉的机器人自定位方法研究[J].华中科技大学学报,2015,43(S1):104-108. ZHANG Hua,XIA Bo. Robot autonmouls localization method study based on binocular vision[J]. Journal of Huazhong University of Science and Technology,2015,43(S1):104-108. [98] SHU T,GHARAATY S,XIE W,et al. Dynamic path tracking of industrial robots with high accuracy using photogrammetry sensor[J]. IEEE/ASME Transactions on Mechatronics,2018,23(3):1159-1170. |
[1] | WU Jizhan, WEI Peitang, WU Shaojie, LIU Huaiju, ZHU Caichao. Rolling Contact Fatigue Performance Prediction and Surface Integrity Optimization of Aviation Gear Steel [J]. Journal of Mechanical Engineering, 2024, 60(8): 81-93. |
[2] | YAN Wei, ZHENG Qun, WEI Jingshan, JIANG Bin, DING Jun. Research on Characteristic Prediction Method of Multistage Axial Compressor Based on Industrial Gas Turbine [J]. Journal of Mechanical Engineering, 2024, 60(8): 299-307. |
[3] | GE Lei, NI Hao, HAO Yunxiao, ZHAO Bin, YUAN Yongliang, QUAN Long. Dead Zone Compensation Control of New Hydraulic Motor-mechanical Linear Actuator [J]. Journal of Mechanical Engineering, 2024, 60(8): 337-347. |
[4] | JIANG Xinchi, LU Chun, MO Jiliang, CHEN Xiaoting, ZHANG Qinghe, ZHAO Jing. Simulation of High-temperature Wear Degradation of Train Brake Pad Friction Block Considering Temperature-dependent Wear Rate [J]. Journal of Mechanical Engineering, 2024, 60(7): 195-202. |
[5] | LIU Zhanguang, ZHANG Yun, LIU Qingyu. Modeling for CNC Machine Tool Thermal Error Based on DF-LSTM [J]. Journal of Mechanical Engineering, 2024, 60(7): 249-257. |
[6] | WANG Junjiu, LIU Jinyu, HOU Xiujuan, QI Zhenguo, LI Zhimin, LIU Tao. Hybrid Mechanistic and Data-driven Modeling Method of Compliant Assembly Variation Prediction for Train Body [J]. Journal of Mechanical Engineering, 2024, 60(6): 177-186. |
[7] | ZHENG Xuebin, HAN Longshuai, LI Xuetao, E Hongwei, WU Xiangdong, WAN Min. Study on Influencing Factors of U-bending Springback Prediction of DP780 Dual-phase Steel [J]. Journal of Mechanical Engineering, 2024, 60(6): 197-206. |
[8] | GAO Kai, LUO Pan, XIE Jin, HU Lin, CHEN Bin, DU Ronghua. Hybrid Electric Vehicle Speed Profile Prediction Based on Data Fusion [J]. Journal of Mechanical Engineering, 2024, 60(6): 342-353. |
[9] | LIU Daxin, WANG Ke, LIU Zhenyu, XU Jiatong, TAN Jianrong. Research on Digital Twin Modeling Method for Robotic Assembly Cell Based on Data Fusion and Knowledge Reasoning [J]. Journal of Mechanical Engineering, 2024, 60(5): 36-50. |
[10] | ZHAO Chengwei, ZHANG Wenhao, GONG Tiancheng, ZHANG Yiyun, WANG Changtao, LUO Xiangang. Optimal Design and Analysis of Ultra-flat Adsorption Loading for Planar Optical Components [J]. Journal of Mechanical Engineering, 2024, 60(5): 241-248. |
[11] | MENG Yuan, SHI Baojun, ZHANG Dequan. Research and Improvement of Kriging-HDMR Modeling Method [J]. Journal of Mechanical Engineering, 2024, 60(5): 249-263. |
[12] | ZHAO Chuanjun, WANG Jipeng, XU Lizhong. Research on Accuracy and Localization Characterization of Pulse Electrochemical Micromachining Based on Equivalent Physical Model [J]. Journal of Mechanical Engineering, 2024, 60(5): 378-389. |
[13] | ZHANG Junhui, LIU Shihao, XU Bing, HUANG Weidi, LÜ Fei, HUANG Xiaochen. Research Status and Development Trends on Intelligent Key Technology of the Axial Piston Pump [J]. Journal of Mechanical Engineering, 2024, 60(4): 32-49. |
[14] | WANG Songli, FANG Xudong, GAO Bonan, ZHAO Libo, TIAN Bian, LIN Qijing, ZHANG Zhongkai, RAO Hao, LI Yu, JIANG Zhuangde. Study on Automatic Gain Control and Phase Compensation Control for MEMS Resonant Pressure Sensors [J]. Journal of Mechanical Engineering, 2024, 60(4): 82-91. |
[15] | ZHOU Ning, YAO Jianyong, DENG Wenxiang. Neural Network-based Robust Intelligent Control of Proportional Servo Valve Center with Flow Force Compensation [J]. Journal of Mechanical Engineering, 2024, 60(4): 126-133. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||